[2] Agarwal, R.: 
Difference Equations and Inequalities. Theory, Methods and Applications. Marcel Dekker New York (1992). 
MR 1155840 | 
Zbl 0925.39001[3] Amleh, A. M., Grove, E. A., Ladas, G., Georgiou, D. A.: 
On the recursive sequence $x_{n+1}=\alpha +(x_{n-1}/x_n)$. J. Math. Anal. Appl. 233 (1999), 790-798. 
MR 1689579 | 
Zbl 0962.39004[5] Devault, R., Kosmala, W., Ladas, G., Schultz, S. W.: 
Global behavior of $y_{n+1}=(p+y_{n-k})/(qy_n+y_{n-k})$. Nonlinear Analysis 47 (2001), 4743-4751. 
MR 1975867[7] Devault, R., Schultz, S. W.: 
On the dynamics of $x_{n+1}=(\beta x_n+\gamma x_{n-1})/(Bx_n+Dx_{n-2})$. Comm. Appl. Nonlinear Anal. 12 (2005), 35-39. 
MR 2129054[8] Elabbasy, E. M., El-Metwally, H., Elsayed, E. M.: 
On the difference equation $x_{n+1}=( \alpha x_{n-l}+\beta x_{n-k}) /( Ax_{n-l}+Bx_{n-k})$. Acta Mathematica Vietnamica 33 (2008), 85-94. 
MR 2418690[12] EL-Owaidy, H. M., Ahmed, A. M., Mousa, M. S.: 
On asymptotic behavior of the difference equation $x_{n+1}=\alpha +(x_{n-1}^p/x_n^p)$. J. Appl. Math. Comput. 12 (2003), 31-37. 
DOI 10.1007/BF02936179 | 
MR 1976801[13] EL-Owaidy, H. M., Ahmed, A. M., Elsady, Z.: 
Global attractivity of the recursive sequence $x_{n+1}=(\alpha -\beta x_{n-k})/(\gamma +x_n)$. J. Appl. Math. Comput. 16 (2004), 243-249. 
DOI 10.1007/BF02936165 | 
MR 2080567[14] Gibbons, C. H., Kulenovic, M. R. S., Ladas, G.: 
On the recursive sequence $x_{n+1}=(\alpha +\beta x_{n-1})/(\gamma +x_n)$. Math. Sci. Res. Hot-Line 4(2) (2000), 1-11. 
MR 1742735[15] Grove, E. A., Ladas, G.: 
Periodicities in Nonlinear Difference Equations. Vol. 4. Chapman & Hall / CRC (2005). 
MR 2193366[16] Karakostas, G.: 
Convergence of a difference equation via the full limiting sequences method. Differ. Equ. Dyn. Syst. 1 (1993), 289-294. 
MR 1259169 | 
Zbl 0868.39002[17] Karakostas, G., Stević, S.: 
On the recursive sequences $x_{n+1}=A+f(x_n,\dots,x_{n-k+1})/ x_{n-1}$. Comm. Appl. Nonlinear Anal. 11 (2004), 87-100. 
MR 2069821[18] Kocic, V. L., Ladas, G.: 
Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Kluwer Academic Publishers Dordrecht (1993). 
MR 1247956 | 
Zbl 0787.39001[19] Kulenovic, M. R. S., Ladas, G.: 
Dynamics of Second Order Rational Difference Equations with Open Problems and conjectures. Chapman & Hall / CRC (2001). 
MR 1935074[20] Kulenovic, M. R. S., Ladas, G., Sizer, W. S.: 
On the recursive sequence $x_{n+1}=(\alpha x_n+\beta x_{n-1})/(\gamma x_n+\delta x_{n-1})$. Math. Sci. Res. Hot-Line 2 (1998), 1-16. 
MR 1623643 | 
Zbl 0960.39502[21] Kuruklis, S. A.: 
The asymptotic stability of $ x_{n+1}-ax_n+bx_{n-k}=0$. J. Math. Anal. Appl. 188 (1994), 719-731. 
MR 1305480[22] Ladas, G., Gibbons, C. H., Kulenovic, M. R. S., Voulov, H. D.: 
On the trichotomy character of $x_{n+1}=(\alpha +\beta x_n+\gamma x_{n-1})/(A+x_n)$. J. Difference Equ. Appl. 8 (2002), 75-92. 
MR 1884593 | 
Zbl 1005.39017[23] Ladas, G., Gibbons, C. H., Kulenovic, M. R. S.: 
On the dynamics of $x_{n+1}=(\alpha +\beta x_n+\gamma x_{n-1})/(A+Bx_n)$. Proceeding of the Fifth International Conference on Difference Equations and Applications, Temuco, Chile, Jan. 3-7, 2000 Taylor and Francis London (2002), 141-158. 
MR 2016061[24] Ladas, G., Camouzis, E., Voulov, H. D.: 
On the dynamic of $x_{n+1}=(\alpha +\gamma x_{n-1}+\delta x_{n-2})/(A+x_{n-2})$. J. Difference Equ. Appl. 9 (2003), 731-738. 
MR 1992906[25] Ladas, G.: 
On the rational recursive sequence $x_{n+1}=(\alpha +\beta x_n+\gamma x_{n-1})/(A+Bx_n+Cx_{n-1})$. J. Difference Equ. Appl. 1 (1995), 317-321. 
MR 1350447[26] Li, W. T., Sun, H. R.: 
Global attractivity in a rational recursive sequence. Dyn. Syst. Appl. 11 (2002), 339-346. 
MR 1941754 | 
Zbl 1019.39007[28] Stevi'c, S.: 
On the recursive sequence $x_{n+1}=g(x_n,x_{n-1})/(A+x_n)$. Appl. Math. Letter 15 (2002), 305-308. 
MR 1891551[29] Stevi'c, S.: 
On the recursive sequence $x_{n+1}=(\alpha +\beta x_n)/(\gamma -x_{n-k})$. Bull. Inst. Math. Acad. Sin. 32 (2004), 61-70. 
MR 2037745[30] Stevi'c, S.: 
On the recursive sequences $x_{n+1}=\alpha +(x_{n-1}^p/x_n^p)$. J. Appl. Math. Comput. 18 (2005), 229-234. 
MR 2137703[31] Yang, X., Su, W., Chen, B., Megson, G. M., Evans, D. J.: 
On the recursive sequence $x_{n+1}=(ax_{n-1}+bx_{n-2})/(c+dx_{n-1}x_{n-2})$. J. Appl. Math. Comput. 162 (2005), 1485-1497. 
MR 2113984[32] Zayed, E. M. E., El-Moneam, M. A.: 
On the rational recursive sequence $x_{n+1}=(D+\alpha x_n+\beta x_{n-1}+\gamma x_{n-2})/(Ax_n+Bx_{n-1}+Cx_{n-2})$. Comm. Appl. Nonlinear Anal. 12 (2005), 15-28. 
MR 2163175[33] Zayed, E. M. E., El-Moneam, M. A.: 
On the rational recursive sequence $x_{n+1}=(\alpha x_n+\beta x_{n-1}+\gamma x_{n-2}+\delta x_{n-3})/(Ax_n+Bx_{n-1}+Cx_{n-2}+Dx_{n-3})$. J. Appl. Math. Comput. 22 (2006), 247-262. 
DOI 10.1007/BF02896475 | 
MR 2248455[34] Zayed, E. M. E., El-Moneam, M. A.: 
On the rational recursive sequence $x_{n+1}=\Bigl( A+ \sum_{i=0}^k\alpha _ix_{n-i}\Bigr) \Big/ \Bigl( B+\sum_{i=0}^k\beta _ix_{n-i}\Bigr)$. Int. J. Math. Math. Sci. 2007 (2007), 12, Article ID23618. 
MR 2295740[35] Zayed, E. M. E., El-Moneam, M. A.: 
On the rational recursive sequence $x_{n+1}=ax_n- bx_n/\left( cx_n-dx_{n-k}\right)$. Comm. Appl. Nonlinear Anal. 15 (2008), 47-57. 
MR 2414364[36] Zayed, E. M. E., El-Moneam, M. A.: 
On the rational recursive sequence $x_{n+1}=\Bigl( A+ \sum_{i=0}^k\alpha _ix_{n-i}\Bigr) \Big/ \sum_{i=0}^k\beta _ix_{n-i}$. Math. Bohem. 133 (2008), 225-239. 
MR 2494777[37] Zayed, E. M. E., El-Moneam, M. A.: 
On the rational recursive sequence $x_{n+1}=Ax_n+( \beta x_n+\gamma x_{n-k}) /( Cx_n+Dx_{n-k})$. Comm. Appl. Nonlinear Anal. 16 (2009), 91-106. 
MR 2554552[38] Zayed, E. M. E., El-Moneam, M. A.: 
On the rational recursive sequence $x_{n+1}=( \alpha +\beta x_{n-k}) /( \gamma -x_n)$. J. Appl. Math. Comput. 31 (2009), 229-237. 
DOI 10.1007/s12190-008-0205-6 | 
MR 2545724