Previous |  Up |  Next


Title: Infinitely many solutions of a second-order $p$-Laplacian problem with impulsive condition (English)
Author: Wang, Libo
Author: Ge, Weigao
Author: Pei, Minghe
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 55
Issue: 5
Year: 2010
Pages: 405-418
Summary lang: English
Category: math
Summary: Using the critical point theory and the method of lower and upper solutions, we present a new approach to obtain the existence of solutions to a $p$-Laplacian impulsive problem. As applications, we get unbounded sequences of solutions and sequences of arbitrarily small positive solutions of the $p$-Laplacian impulsive problem. (English)
Keyword: critical point theory
Keyword: lower and upper solutions
Keyword: impulsive
Keyword: $p$-Laplacian
MSC: 34A45
MSC: 34B18
MSC: 34B37
MSC: 47H15
MSC: 47J30
MSC: 58E05
idZBL: Zbl 1224.34091
idMR: MR2737720
DOI: 10.1007/s10492-010-0015-7
Date available: 2010-11-24T08:14:58Z
Last updated: 2020-07-02
Stable URL:
Reference: [1] Anello, G., Cordaro, G.: Infinitely many arbitrarily small positive solutions for the Dirichlet problem involving the $p$-Laplacian.Proc. R. Soc. Edinb., Sect. A 132 (2002), 511-519. MR 1912413, 10.1017/S030821050000175X
Reference: [2] Cîrstea, F., Motreanu, D., Rădulescu, V.: Weak solutions of quasilinear problems with nonlinear boundary condition.Nonlinear Anal., Theory Methods Appl. 43 (2001), 623-636. MR 1804861, 10.1016/S0362-546X(99)00224-2
Reference: [3] Costa, D. G., Magalhães, C. A.: Existence results for perturbations of the $p$-Laplacian.Nonlinear Anal., Theory Methods Appl. 24 (1995), 409-418. MR 1312776, 10.1016/0362-546X(94)E0046-J
Reference: [4] Coster, C. De, Habets, P.: Two-point Boundary Value Problems. Lower and Upper Solutions.Elsevier Amsterdam (2006). MR 2225284
Reference: [5] Amrouss, A. R. El, Moussaoui, M.: Minimax principle for critical point theory in applications to quasilinear boundary value problems.Electron. J. Differ. Equ. 18 (2000), 1-9. MR 1744087
Reference: [6] Guo, Y., Liu, J.: Solutions of $p$-sublinear $p$-Laplacian equation via Morse theory.J. Lond. Math. Soc. 72 (2005), 632-644. Zbl 1161.35405, MR 2190329, 10.1112/S0024610705006952
Reference: [7] Nieto, J. J., O'Regan, D.: Variational approach to impulsive differential equation.Nonlinear Anal., Real World Appl. 10 (2009), 680-690. MR 2474254
Reference: [8] Omari, P., Zanolin, F.: An elliptic problem with arbitrarily small positive solutions.Electron. J. Differ. Equ., Conf. 05 (2000), 301-308. Zbl 0959.35059, MR 1799060


Files Size Format View
AplMat_55-2010-5_4.pdf 259.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo