[2] Anderson, P. W., Kim, Y. B.: 
Hard superconductivity: Theory of the motion of Abrikosov flux lines. Rev. Mod. Phys. 36 (1964), 39–43. 
DOI 10.1103/RevModPhys.36.39[4] Beasley, M. R., Labusch, R., Webb, W. W: 
Flux creep in type-II superconductors. Phys. Rev. 181 (1969), 682–700. 
DOI 10.1103/PhysRev.181.682[5] Bossavit, A.: 
Computational Electromagnetism. Variational Formulations, Complementarity, Edge Elements. (Electromagnetism, Vol. XVIII.) Academic Press, Orlando 1998. 
MR 1488417 | 
Zbl 0945.78001[6] Cessenat, M.: 
Mathematical methods in electromagnetism. Linear theory and applications. (Series on Advances in Mathematics for Applied Sciences, Vol. 41.) World Scientific Publishers, Singapore 1996. 
MR 1409140 | 
Zbl 0917.65099[9] Evans, L. C.: 
Partial Differential Equations. (Graduate Studies in Mathematics, Vol. 19.) American Mathematical Society, Providence, RI 1998. 
MR 1625845[10] Evans, L. C.: 
Weak Convergence Methods for Nonlinear Partial Differential Equations. (Conference Board of the Mathematical Sciences, Vol. 74. Regional Conference Series in Mathematics.) American Mathematical Society, Providence 1990. 
MR 1034481 | 
Zbl 0698.35004[11] Fabrizio, M., Morro, A.: 
Electromagnetism of Continuous Media. (Mathematical Modelling and Applications.) Oxford University Press, Oxford 2003. 
MR 1996323 | 
Zbl 1027.78001[12] Gasser, I., Marcati, P.: 
On a generalization of the div-curl lemma. Osaka J. Math. 45 (2008), 211–214. 
MR 2416657 | 
Zbl 1139.35379[14] Jost, J.: 
Partial Differential Equations. (Graduate Texts in Mathematics Vol. 214 .) Springer, New York xxxx. 
MR 1919991 | 
Zbl 1121.35001[16] Kufner, A., John, O., Fučík, S.: 
Function Spaces. (Monograpfs and Textbooks on Mechanics of Solids and Fluids.) Noordhoff International Publishing, Leyden 1977. 
MR 0482102[17] London, F.: 
Superfluids. Vol. I.: Macroscopic Theory of Superconductivity. New York: John Wiley & Sons, Inc. London: Chapman & Hall, Ltd., New York 1950. 
Zbl 0058.23405[18] London, F.: 
Superfluids. Vol. II. Macroscopic Theory of Superfluid Helium. John Wiley & Sons, Inc., New York 1954. 
Zbl 0058.23405[19] Mayergoyz, I. D.: Nonlinear Diffusion of Electromagnetic Fields with Applications to Eddy Currents and Surerconductivity. Academic Press, San Diego 1998.
[20] Monk, P.: 
Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford 2003. 
MR 2059447 | 
Zbl 1024.78009[21] Murat, F.: 
Compacite par compensation. Ann. Sc. Norm. Super. Pisa, Cl. Sci. IV Ser. 5 (1978), 489–507. 
MR 0506997 | 
Zbl 0464.46034[22] Nečas, J.: 
Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967. 
MR 0227584[23] Nečas, J.: 
Introduction to the Theory of Nonlinear Elliptic Equations. John Wiley & Sons Ltd., New York 1986. 
MR 0874752[26] Slodička, M.: 
A time discretization scheme for a nonlinear degenerate eddy current model for ferromagnetic materials. IMA J. Numer. Anal. 26 (2006), 1, 173–187. 
DOI 10.1093/imanum/dri030 | 
MR 2193975[28] Tartar, L.: 
Compensated compactness and applications to partial differential equations. In: Nonlinear Analysis and Mechanics: Heriot–Watt Symp., Vol. 4, Edinburgh 1979, Res. Notes Math. 39 (1979), pp. 136–212. 
MR 0584398 | 
Zbl 0437.35004[29] Vajnberg, M. M.: 
Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations. John Wiley & Sons, New York 1973. 
Zbl 0279.47022