[2] Dupačová, J., Wets, R. J.-B.: 
Asymptotic behaviour of statistical estimates and optimal solutions of stochastic optimization problems. Ann. Statist. 16 (1984), 1517–1549. 
DOI 10.1214/aos/1176351052 | 
MR 0964937 
[3] Dvoretzky, A., Kiefer, J., Wolfowitz, J.: 
Asymptotic minimax character of the sample distribution function and the classical multinomial estimate. Ann. Math. Statist. 56 (1956). 642–669. 
DOI 10.1214/aoms/1177728174 | 
MR 0083864 
[4] Henrion, R., Römisch, W.: 
Metric regularity and quantitative stability in stochastic programs with probability constraints. Math. Programming 84 (1999), 55–88. 
MR 1687280 
[6] Kaniovski, Y. M., King, A. J., Wets, R. J.-B.: 
Probabilistic bounds (via large deviations) for the solutions of stochastic programming problems. Ann. Oper. Res. 56 (1995), 189–208. 
DOI 10.1007/BF02031707 | 
MR 1339792 | 
Zbl 0835.90055 
[7] Kaňková, V.: 
Optimum solution of a stochastic optimization problem with unknown parameters. In: Trans. Seventh Prague Conference, Academia, Prague 1977, pp. 239–244. 
MR 0519478 
[8] Kaňková, V.: An approximative solution of stochastic optimization problem. In: Trans. Eighth Prague Conference, Academia, Prague 1978, pp. 349–353.
[9] Kaňková, V.: 
On the stability in stochastic programming: the case of individual probability constraints. Kybernetika 33 (1997), 5, 525–546. 
MR 1603961 
[10] Kaňková, V.: Unemployment problem, restructuralization and stochastic programming. In: Proc. Mathematical Methods in Economics 1999 (J. Plešingr, ed.), Czech Society for Operations Research and University of Economics Prague, Jindřichův Hradec, pp. 151–158.
[11] Kaňková, V., Šmíd, M.: 
On approximation in multistage stochastic programs: Markov dependence. Kybernetika 40 (2004), 5, 625–638. 
MR 2121001 
[12] Kaňková, V., Houda, M.: Empirical estimates in stochastic programming. In: Proc. Prague Stochastics 2006 (M. Hušková and M. Janžura, eds.), Matfyzpress, Prague 2006, pp. 426–436.
[13] Kaňková, V.: Empirical Estimates via Stability in Stochastic Programming. Research Report ÚTIA AV ČR No. 2192, Prague 2007.
[14] Kaňková, V.: 
Multistage stochastic programs via autoregressive sequences and individual probability constraints. Kybernetika 44 (2008), 2, 151–170. 
MR 2428217 
[15] Klebanov, L. B.: Heavy Tailed Distributions. Matfyzpress, Prague 2003.
[16] Konno, H., Yamazaki, H.: 
Mean-absolute deviation portfolio optimization model and its application to Tokyo stock markt. Management Sci. 37 (1991), 5, 519–531. 
DOI 10.1287/mnsc.37.5.519 
[17] Kotz, S., Balakrishnan, N., Johnson, N. L.: 
Continuous Multiviariate Distributions. Volume 1: Models and Applications. Wiley, New York 2000. 
MR 1788152 
[18] Kozubowski, T. J. , Panorska, A. K., Rachev, S. T. : Statistical issues in modeling stable portfolios. In: Handbook of Heavy Tailed Distributions in Finance (S. T. Rachev, ed.), Elsevier, Amsterdam 2003, pp. 131–168.
[19] Homen de Mello, T.: On rates of convergence for stochastic optimization problems under non-i.i.d. sampling. SIAM J. Optim. 19 (2009), 2, 524–551.
[20] Meerschaert, M. M., Scheffler, H.-P.: Portfolio modeling with heavy tailed random vectors. In: Handbook of Heavy Tailed Distributions in Finance (S. T. Rachev, ed.), Elsevier, Amsterdam 2003, pp. 595–640.
[21] Omelchenko, V.: Stable Distributions and Application to Finance. Diploma Thesis (supervisor L. Klebanov), Faculty of Mathematics and Physics, Charles University Prague, Prague 2007.
[22] Pflug, G. Ch.: 
Scenario tree generation for multiperiod financial optimization by optimal discretization. Math. Program. Ser. B 89 (2001), 251–271. 
DOI 10.1007/PL00011398 | 
MR 1816503 
[23] Pflug, G. Ch.: 
Stochastic optimization and statistical inference. In: Stochastic Programming (Handbooks in Operations Research and Management Science, Vol. 10, A. Ruszczynski and A. A. Shapiro, eds.), Elsevier, Amsterdam 2003, pp. 427–480. 
MR 2052759 
[24] Pflug, G. Ch., Römisch, W.: 
Modeling Measuring and Managing Risk. World Scientific Publishing Co. Pte. Ltd, New Jersey, 2007. 
MR 2424523 
[25] Prékopa, A.: 
Probabilistic programming. In: Stochastic Programming, (Handbooks in Operations Research and Managemennt Science, Vol. 10, (A. Ruszczynski and A. A. Shapiro, eds.), Elsevier, Amsterdam 2003, pp. 267–352. 
MR 2051791 
[26] Römisch, W., Schulz, R.: 
Stability of solutions for stochastic programs with complete recourse. Math. Oper. Res. 18 (1993), 590–609. 
DOI 10.1287/moor.18.3.590 | 
MR 1250562 
[27] Römisch, W.: 
Stability of stochastic programming problems. In: Stochastic Programming, Handbooks in Operations Research and Managemennt Science, Vol 10 (A. Ruszczynski and A. A. Shapiro, eds.), Elsevier, Amsterdam 2003, pp. 483–554. 
MR 2052760 
[28] Salinetti, G., Wets, R. J. B.: 
On the convergence of closed-valued measurable multifunctions. Trans. Amer. Math. Soc. 266 (1981), 1, 275–289. 
MR 0613796 | 
Zbl 0501.28005 
[30] Serfling, J. R.: 
Approximation Theorems of Mathematical Statistics. Wiley, New York 1980. 
MR 0595165 | 
Zbl 1001.62005 
[32] Šmíd, M.: 
The expected loss in the discretization of multistage stochastic programming problems-estimation and convergence rate. Ann. Oper. Res. 165 (2009), 29–45. 
DOI 10.1007/s10479-008-0355-9 | 
MR 2470981 
[33] Shorack, G. R., Wellner, J. A.: 
Empirical Processes and Applications to Statistics. Wiley, New York 1986. 
MR 0838963 
[34] Wets, R. J.-B.: A Statistical Approach to the Solution of Stochastic Programs with (Convex) Simple Recourse. Research Report, University Kentucky, USA 1974.