Previous |  Up |  Next


Title: Choquetova teorie a Dirichletova úloha (Czech)
Title: Choquet’s theory and the Dirichlet problem (English)
Author: Lukeš, Jaroslav
Author: Netuka, Ivan
Author: Veselý, Jiří
Language: Czech
Journal: Pokroky matematiky, fyziky a astronomie
ISSN: 0032-2423
Volume: 45
Issue: 2
Year: 2000
Pages: 98-124
Category: math
MSC: 31-xx
MSC: 31A25
MSC: 31B05
MSC: 31B10
MSC: 46A55
MSC: 52A99
idZBL: Zbl 1049.31004
Date available: 2010-12-11T17:51:48Z
Last updated: 2012-08-25
Stable URL:
Reference: [Al] Alfsen, E. M.: Compact convex sets and boundary integrals.Springer-Verlag, Berlin 1971 (MR 56 #3615). Zbl 0209.42601, MR 0445271
Reference: [Ar] Armitage, D. A.: The Riesz-Herglotz representation for positive harmonic functions via Choquet’s theorem.In: Potential Theory — ICPT 94, de Gruyter, Berlin 1996, 229–232 (MR 97f:31006). Zbl 0856.31003, MR 1404709
Reference: [Ba1] Bauer, H.: Aproximace a abstraktní hranice.Pokroky mat. fyz. astronom. 26 (1981), 305–326 (MR 83d:41028). MR 0645302
Reference: [Ba2] Bauer, H.: Simplicial function spaces and simplexes.Expo. Math. 3 (1985), 165–168 (MR 87c:46009). Zbl 0564.46007, MR 0816401
Reference: [Be] Bernstein, S.: Sur les fonctions absolument monotones.Acta Math. 51 (1928), 1–66.
Reference: [BlHa1] Bliedtner, J., Hansen, W.: Simplicial cones in potential theory.Inventiones Math. 29 (1975), 83–110 (MR 52 #8470). Zbl 0308.31011, MR 0387630
Reference: [BlHa2] Bliedtner, J., Hansen, W.: The weak Dirichlet problem.J. Reine Angew. Math. 348 (1984), 34–39 (MR 85h:31012). Zbl 0536.31009, MR 0733921
Reference: [BlHa3] Bliedtner, J., Hansen, W.: Potential theory — An analytic and probabilistic approach to balayage.Springer-Verlag, Berlin 1986 (MR 88b:31002). Zbl 0706.31001, MR 0850715
Reference: [Bo] Bochner, S.: Harmonic analysis and the theory of probability.University of California Press, Berkeley and Los Angeles 1955 (MR 17 #273d). Zbl 0068.11702, MR 0072370
Reference: [CaLi] Caffarelli, L. A., Littman, W.: Representation formulas for solutions to ${\Delta u-u=0}$ in ${\mathbb {R}}^n$.In: Studies in partial differential equations. MAA Stud. Math. 23, Math. Assoc. America, Washington, D. C. 1982, 249–263 (MR 84k:35045). MR 0716508
Reference: [Ed] Edgar, G. A.: Two integral representations.In: Measure theory and its applications (Sherbrooke, Que., 1982). Lecture Notes in Math. 1033, Springer-Verlag 1983, 193–198 (MR 85g:30034). MR 0729532
Reference: [EfKa] Effros, E. G., Kazdan, J. L.: Applications of Choquet simplexes to elliptic and parabolic boundary value problems.J. Diff. Eq. 8 (1970), 95–134 (MR 41 #4215). Zbl 0255.46018, MR 0259577
Reference: [FoLiPh] Fonf, V. P., Lindenstrauss, J., Phelps, R. R.: Infinite dimensional convexity.Preprint (1999). MR 1863703
Reference: [Ha] Hansen, W.: A Liouville property for spherical averages in the plane.Preprint (1999). MR 1819883
Reference: [HaNa1] Hansen, W., Nadirashvili, N.: Littlewood’s one circle problem.J. London Math. Soc. (2) 50 (1994), 349–360 (MR 95j:31002). Zbl 0804.31001, MR 1291742
Reference: [HaNa2] Hansen, W., Nadirashvili, N.: On Veech’s conjecture for harmonic functions.Ann. Scuola Norm. Sup. Pisa Cl.-Sci. (4), 22 (1995), 137–153 (MR 96c:31004). Zbl 0846.31003, MR 1315353
Reference: [He] Helms, L. L.: Introduction to potential theory.Pure and Applied Mathematics, Vol. XXII, Wiley-Interscience, New York – London – Sydney 1969 (MR 41 #5638). Zbl 0188.17203, MR 0261018
Reference: [Ho] Holland, F.: The extreme points of a class of functions with positive real part.Math. Ann. 202 (1973), 85–87 (MR 49 #562). Zbl 0246.30027, MR 0335782
Reference: [HuWh] Hunt, R. R., Wheeden, R. L.: Positive harmonic functions on Lipschitz domains.Trans. Amer. Math. Soc. 147 (1970), 505–527 (MR 43 #547). Zbl 0193.39601, MR 0274787
Reference: [Cho] Choquet, G.: Lectures on analysis I–III.W. A. Benjamin, Inc., New York––Amsterdam 1969 (MR 40 #3254).
Reference: [Cho1] Choquet, G.: Deux exemples classiques de représentation intégrale.Enseignement Math.(2) 15 (1969), 63–75 (MR 40 #6224). Zbl 0175.42202, MR 0253009
Reference: [Ja] Jacobs, K.: Extremalpunkte konvexer Mengen.In: Selecta Mathematica, III. Selecta Math., Heidelberger Taschenbücher 86 (1971), 90–118 (MR 58 #30754). Zbl 0219.46014, MR 0641050
Reference: [Ke1] Keldyš, M. V.: On the solubility and stability of the Dirichlet problem (rusky).Uspechi Mat. Nauk. 8 (1941), 171–292 (MR 3 #123f). MR 0005249
Reference: [Ke2] Keldyš, M. V.: On the Dirichlet problem (rusky).Dokl. Akad. Nauk SSSR 32 (1941), 308–309 (MR 6 #64a).
Reference: [Kl] Klee, V.: Some new results on smoothness and rotundity in normed linear spaces.Math. Ann. 139 (1959), 51–63 (MR 22 #5879). Zbl 0092.11602, MR 0115076
Reference: [Ko] Korányi, A.: A survey of harmonic functions on symmetric spaces.In: Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1. Amer. Math. Soc., Providence, R. I. 1979, 323–344 (MR 80k:43012).
Reference: [KNV] Král, J., Netuka, I., Veselý, J.: Teorie potenciálu IV.SPN, Praha 1977.
Reference: [Kr] Kružík, M.: Bauer’s maximum principle and hulls of sets.Preprint (2000). MR 1797873
Reference: [Li] Lindenstrauss, J.: Some useful facts about Banach spaces.In: Geometric aspects of functional analysis, Lecture Notes in Math. 1317, Springer-Verlag, Berlin 1988, 185–200 (MR 89g:46015). MR 0950980
Reference: [LM] Lukeš, J., Malý, J.: Measure and integral.Matfyzpress, Praha 1995.
Reference: [LMZ] Lukeš, J., Malý, J., Zajíček, L.: Fine topology methods in real analysis and potential theory.Lecture Notes in Math. 1189, Springer-Verlag, Berlin – New York 1986 (MR 89b:31001). MR 0861411
Reference: [Ma] Martin, R. S..: Minimal positive harmonic functions.Trans. Amer. Math. Soc. 49 (1941), 137–172 (MR 2 #292h). Zbl 0025.33302, MR 0003919
Reference: [Ne] Netuka, I.: The Dirichlet problem for harmonic functions.Amer. Math. Monthly 87 (1980), 621–628 (MR 82c:31005). Zbl 0454.31002, MR 0600920
Reference: [NeVe1] Netuka, I., Veselý, J.: Dirichletova úloha a Keldyšova věta.Pokroky mat. fyz. astronom. 24 (1979), 77–88 (MR 82f:01126). MR 0543123
Reference: [NeVe2] Netuka, I., Veselý, J.: Mean value property and harmonic functions.In: Classical and modern potential theory and applications (Chateau de Bonas, 1993). Kluwer Acad. Publ., Dordrecht 1994, 359–398 (MR 96c:31001). MR 1321628
Reference: [Ph] Phelps, R. R.: Lectures on Choquet’s theorem.D. Van Nostrand Co., Inc., Princeton, N. J. – Toronto, Ont. – London 1966 (MR 33 #1690). Zbl 0135.36203, MR 0193470
Reference: [Pr] Price, G. B.: On the extreme points of convex sets.Duke Math. J. 3 (1937), 56–67. Zbl 0016.22902, MR 1545973
Reference: [Ra] Rakestraw, R. M.: A representation theorem for real convex functions.Pac. J. Math. 60 (1975), 165–168 (MR 52 #14193). Zbl 0266.26009, MR 0393383
Reference: [Rob] Robertson, M. S.: On the coefficients of a typically-real functionas.Bul. Amer. Math. Soc. 41 (1935), 565–572. MR 1563142
Reference: [Rou] Roubíček, T.: Relaxation in optimization theory and variational Gruyter Series in Nonlinear Analysis and Applications 4, de Gruyter, Berlin – New York 1997 (MR 98e:49002). MR 1458067
Reference: [Ve] Veech, W. A.: A converse to the mean value theorem for harmonic functions.Amer. J. Math. 97 (1975), 1007–1027 (MR 52 #14330). MR 0393521


Files Size Format View
PokrokyMFA_45-2000-2_2.pdf 577.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo