[1] Agarwal, R. C., Burrus, C. S.: 
Fast convolution using Fermat number transforms with applications to digital filtering. IEEE Trans. Acoust. Speech Signal Processing 22 (1974), 87–97. 
MR 0398650[2] Antonjuk, P. N., Stanjukovič, K. P.: 
The logistic difference equation. Period doublings and Fermat numbers. (Russian). Dokl. Akad. Nauk SSSR 313 (1990), 1289–1292. 
MR 1080023[3] Biermann, K.-R.: 
Thomas Clausen, Mathematiker und Astronom. J. Reine Angew. Math. 216 (1964), 159–198. 
MR 0164862 | 
Zbl 0127.00504[4] Chang, C. C.: 
An ordered minimal perfect hashing scheme based upon Euler’s theorem. Inform. Sci. 32 (1984), 165–172. 
MR 0749147 | 
Zbl 0567.68037[5] Cooley, J. W., Tukey, J. W.: 
An algorithm for the machine calculation of complex Fourier series. Math. Comp. 19 (1965), 297–301. 
MR 0178586 | 
Zbl 0127.09002[6] Crandall, R. E., Mayer, E., Papadopoulos, J.: The twenty-fourth Fermat number is composite. Math. Comp., submitted (1999), 1–21.
[7] Creutzburg, R., Grundmann, H.-J.: 
Fast digital convolution via Fermat number transform. (German). Elektron. Informationsverarb. Kybernet. 21 (1985), 35–46. 
MR 0805051[8] Feigenbaum, M. J.: 
Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19 (1978), 25–52. 
MR 0501179 | 
Zbl 0509.58037[9] Hewgill, D.: 
A relationship between Pascal’s triangle and Fermat’s numbers. Fibonacci Quart. 15 (1977), 183–184. 
MR 0437343[10] Gauss, C. F.: Disquisitiones arithmeticae. (přeloženo z latinského originálu z r. 1801). Springer, Berlin 1986.
[11] Jones, R., Pearce, J.: 
A postmodern view of fractions and the reciprocals of Fermat primes. Math. Mag. 73 (2000), 83–97. 
MR 1822751[12] Křížek, M.: 
O Fermatových číslech. PMFA 40 (1995), 243–253. 
MR 1386144[13] Křížek, M., Křížek, P.: Kouzelný dvanáctistěn pětiúhelníkový. Rozhledy mat.-fyz. 74 (1997), 234–238.
[14] Křížek, M., Luca, F., Somer, L.: 
17 lectures on Fermat numbers: From number theory to geometry. Springer-Verlag, New York 2001. 
MR 1866957[15] Landry, F.: Sur la décomposition du nombre ${2^{64}+1}$. C. R. Acad. Sci. Paris 91 (1880), 138.
[16] Lucas, E.: Théorèmes d’arithmétique. Atti della Realle Accademia delle Scienze di Torino 13 (1878), 271–284.
[17] Pierpont, J.: 
On an undemostrated theorem of the Disquisitiones Arithmeticæ. Bull. Amer. Math. Soc. 2 (1895/96), 77–83. 
MR 1557414[18] Reed, I. S., Truong, T. K., Welch, L. R.: 
The fast decoding of Reed-Solomon codes using Fermat transforms. IEEE Trans. Inform. Theory 24 (1978), 497–499. 
MR 0504337 | 
Zbl 0385.94016[19] Ripley, B. D.: 
Stochastic simulations. John Wiley & Sons, New York 1987. 
MR 0875224[21] Schönhage, A., Strassen, V.: Fast multiplication of large numbers. (German). Computing 7 (1971), 281–292.
[22] Wantzel, P. L.: Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec la règle at le compas. J. Math. 2 (1837), 366–372.