[1] Babuška, I., Práger, M., Vitásek, E.: 
Numerical processes in differential equations. John Wiley & Sons, New York 1966. 
MR 0223101[2] Bakker, M.: 
A note on $C^0$ Galerkin methods for two-point boundary problem. Numer. Math. 38 (1981/82), 447–453. 
MR 0654109[3] Blum, H., Lin, Q., Rannacher, R.: 
Asymptotic error expansion and Richardson extrapolation for linear finite elements. Numer. Math. 49 (1986), 11–38. 
MR 0847015 | 
Zbl 0594.65082[4] Brandts, J., Křížek, M.: 
History and future of superconvergence in three-dimensional finite element methods. Proc. Conf. Finite Element Methods: Three-dimensional Problems, GAKUTO Internat. Ser. Math. Sci. Appl., vol. 15, Gakkōtosho, Tokyo 2001, 22–33. 
MR 1896264[5] Douglas, J., Dupont, T.: 
Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary value problems. Topics in Numer. Anal. II, Acad. Press 1973, 89–113. 
MR 0366044[6] Chen, C. M., Huang, Y. Q.: High accuracy theory of finite element methods. Hunan Science and Technology Press, Changsha 1995.
[7] Hlaváček, I., Chleboun, J.: 
A recovered gradient method applied to smooth optimal shape problems. Appl. Math. 41 (1996), 281–297. 
MR 1395687[8] Křížek, M.: Padesát let metody konečných prvků. PMFA 37 (1992), 129–140.
[9] Křížek, M., Neittaanmäki, P.: 
On superconvergence techniques. Acta Appl. Math. 9 (1987), 175–198. 
MR 0900263[10] Křížek, M., Neittaanmäki, P., Stenberg, R.: 
Finite Element Methods: Superconvergence, Postprocessing, and A Posteriori Estimates. LN in Pure and Appl. Math., vol. 196, Marcel Dekker, New York 1998. 
MR 1602809[11] Lesaint, P., Zlámal, M.: 
Superconvergence of the gradient of finite element solutions. RAIRO Anal. Numér. 13 (1979), 139–166. 
MR 0533879[12] Oganesjan, L. A., Ruchovec, L. A.: 
An investigation of the rate of convergence of variational-difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary. Ž. Vyčisl. Mat. i Mat. Fiz. 9 (1969), 1102–1120. 
MR 0295599[13] Taylor, A. E.: Úvod do funkcionální analýzy. Academia, Praha 1973.
[14] Wahlbin, L.: 
Superconvergence in Galerkin finite element methods. LN in Math., vol. 1605, Springer, Berlin 1995. 
MR 1439050[15] Zlámal, M.: On the finite element method. Numer. Math. 12 (1968), 394–409.
[16] Zlámal, M.: 
Superconvergence and reduced integration in the finite element method. Math. Comp. 32 (1978), 663–685. 
MR 0495027