[3] Brun, V.: Le crible d’Eratosthène et le théorème de Goldbach. C. R. Acad. Sci. Paris 168 (1919), 544–546.
[4] Crandall, R., Pomerance, C.: 
Prime Numbers. A Computational Perspective. Springer-Verlag, New York 2001. 
MR 1821158[6] Dirichlet, P. G. L.: Beweis des Satzes, daß jede unbegrenzte aritmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält. Abh. Akad. Berlin (1837), 45–71.
[8] Edwards, H. M.: 
Fermat’s last theorem. A genetic introduction to algebraic number theory. Springer-Verlag, New York 1977. 
MR 0616635 | 
Zbl 0355.12001[9] Erdős, P.: 
On a new method in elementary number theory which leads to an elementary proof of the prime number theorem. Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 374–384. 
DOI 10.1073/pnas.35.7.374 | 
MR 0029411[10] Friedlander, J., Iwaniec, H.: 
The polynomial ${X^2+Y^4}$ captures its primes. Ann. of Math. (2) 148 (1998), 945–1040. 
MR 1670065[11] Friedlander, J., Iwaniec, H.: 
Asymptotic sieve for primes. Ann. of Math. (2) 148 (1998), 1041–1065. 
MR 1670069 | 
Zbl 0926.11067[12] Furstenberg, H.: 
Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Analyse Math. 31 (1977), 204–256. 
MR 0498471 | 
Zbl 0347.28016[15] Goldston, D., Yildirim, C. Y.: 
Higher correlations of divisor sums related to primes, I: Triple correlations. Integers 3 (2003), 66 s. 
MR 1985667 | 
Zbl 1118.11039[16] Goldston, D., Yildirim, C. Y.: Higher correlations of divisor sums related to primes, III: $k$-correlations. arXiv:math.NT/0209102, 32 s.
[17] Goldston, D., Yildirim, C. Y.: Small gaps between primes. Preprint.
[21] Green, B., Tao, T.: 
The primes contain arbitrarily long arithmetic progressions. arXiv:math.NT/0404188 (verze 1 z 8. dubna 2004), 49 s. 
MR 2415379[23] Chen, J.: 
On the representation of a large even integer as the sum of a prime and the product of at most two primes. Kexue Tongbao 17 (1966), 385–386. 
MR 0207668[24] Chen, J.: 
On the representation of a large even integer as the sum of a prime and the product of at most two primes. Sci. Sinica 16 (1973), 157–176. 
MR 0434997[25] Křížek, M.: Od Fermatových prvočísel ke geometrii. In: Šolcová, A., Křížek, M., Mink, G., editoři, Matematik Pierre de Fermat. Cahiers du CEFRES č. 28, 131–161. CEFRES, Praha 2002.
[26] Křížek, M., Luca, F., Somer, L.: 
17 lectures on Fermat numbers. From number theory to geometry. Springer-Verlag, New York 2001. 
MR 1866957 | 
Zbl 1010.11002[27] Kučera, L.: Kombinatorické algoritmy. SNTL, Praha 1983.
[29] Matijasevič, Ju. V.: Diofantovosť perečislimych množestv. Dokl. Akad. Nauk SSSR 191 (1970), 279–282.
[30] Matijasevič, Ju. V.: Diofantovo predstavlenie množestva prostych čisel. Dokl. Akad. Nauk SSSR 196 (1971), 770–773.
[31] Matijasevič, Ju. V.: Hilbert’s tenth problem. MIT Press, Cambridge, MA 1993.
[32] Nathanson, M. B.: 
Additive Number Theory. The Classical Bases. Springer-Verlag, New York 1996. 
MR 1395371 | 
Zbl 0859.11002[34] Novák, B.: O elementárním důkazu prvočíselné věty. Časopis pro pěstování matematiky 100 (1975), 71–84.
[36] Porubský, Š.: Fermat a teorie čísel. In: Šolcová, A., Křížek, M., Mink, G., editoři, Matematik Pierre de Fermat. Cahiers du CEFRES č. 28, 49–86. CEFRES, Praha 2002.
[38] Rabin, M. O.: 
Probabilistic Algorithms. In: J. F. Traub, editor, Algorithms and Complexity, 21–39. Academic Press, New York 1976. 
MR 0464678 | 
Zbl 0384.60001[39] Riemann, B.: Über die Anzahl der Primzahlen unter einer gegebenen Grösse. Monatsberichte der Berliner Akademie (1859), 671–680.
[42] Serre, J.-P.: 
A Course in Arithmetics. Springer-Verlag, New York 1973. 
MR 0344216[43] Shor, P.: 
Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science (Santa Fe, NM, 1994), 124–134. IEEE Comput. Soc. Press, Los Alamitos, CA 1994. 
MR 1489242[45] Stillwell, J.: 
Elements of algebra. Geometry, numbers, equations. Springer-Verlag, New York 1994. 
MR 1311026 | 
Zbl 0832.00001[46] Szemerédi, E.: 
On sets of integers containing no $k$ elements in arithmetic progression. Acta Arith. 27 (1975), 199–245. 
MR 0369312[47] Šnireľman, L. G.: Ob additivnych svojstvach čisel. Izvestija donskogo politechničeskogo instituta v Novočerkasske 14 (1930), 3–28.
[48] Tao, T.: 
A quantitative ergodic theory proof of Szemerédi’s theorem. arXiv:math.CO/0405251, 51 s. 
Zbl 1127.11011[52] Tenenbaum, G.: 
Introduction to analytic and probabilistic number theory. Cambridge University Press, Cambridge, U. K. 1995. 
MR 1342300 | 
Zbl 0880.11001[53] Vinogradov, I. M.: Predstavlenie něčotnogo čisla summoj trjoch prostych čisel. Dokl. Akad. Nauk SSSR 15 (1937), 291–294.