| Title: | Binary segmentation and Bonferroni-type bounds (English) | 
| Author: | Černý, Michal | 
| Language: | English | 
| Journal: | Kybernetika | 
| ISSN: | 0023-5954 | 
| Volume: | 47 | 
| Issue: | 1 | 
| Year: | 2011 | 
| Pages: | 38-49 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | We introduce the function $Z(x; \xi, \nu) := \int_{-\infty}^x \varphi(t-\xi)\cdot \Phi(\nu t)\ \text{d}t$, where $\varphi$ and $\Phi$ are the pdf and cdf of $N(0,1)$, respectively. We derive two recurrence formulas for the effective computation of its values. We show that with an algorithm for this function, we can efficiently compute the second-order terms of Bonferroni-type inequalities yielding the upper and lower bounds for the distribution of a max-type binary segmentation statistic in the case of small samples (where asymptotic results do not work), and in general for max-type random variables of a certain type. We show three applications of the method – (a) calculation of critical values of the segmentation statistic, (b) evaluation of its efficiency and (c) evaluation of an estimator of a point of change in the mean of time series. (English) | 
| Keyword: | Bonferroni inequality | 
| Keyword: | segmentation statistic | 
| Keyword: | Z-function | 
| MSC: | 05A20 | 
| MSC: | 62E17 | 
| idZBL: | Zbl 1209.62014 | 
| idMR: | MR2807862 | 
| . | 
| Date available: | 2011-04-12T13:01:44Z | 
| Last updated: | 2013-09-22 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/141476 | 
| . | 
| Reference: | [1] Antoch, J., Hušková, M.: Permutation tests in change point analysis.Statist. Probab. Lett. 53 (2001), 37–46. Zbl 0980.62033, MR 1843339, 10.1016/S0167-7152(01)00009-8 | 
| Reference: | [2] Antoch, J., Hušková, M., Jarušková, D.: Off-line statistical process control.In: Multivariate Total Quality Control, Physica-Verlag, Heidelberg 2002, 1–86. Zbl 1039.62110, MR 1886416 | 
| Reference: | [3] Antoch, J., Hušková, M., Prášková, Z.: Effect of dependence on statistics for determination of change.J. Statist. Plan. Infer. 60 (1997), 291–310. MR 1456633, 10.1016/S0378-3758(96)00138-3 | 
| Reference: | [4] Antoch, J., Jarušková, D.: Testing a homogeneity of stochastic processes.Kybernetika 43 (2007), 415–430. Zbl 1135.62066, MR 2377920 | 
| Reference: | [5] Černý, M., Hladík, M.: The regression tolerance quotient in data analysis.In: Proc. 28th Internat. Conf. on Mathematical Methods in Economics 2010 (M. Houda and J. Friebelová, eds.), University of South Bohemia, České Budějovice 1 (2010), 98–104. | 
| Reference: | [6] Chen, X.: Inference in a simple change-point problem.Scientia Sinica 31 (1988), 654–667. MR 0964890 | 
| Reference: | [7] 
		: HASH(0x2428320).K. Dohmen: Improved inclusion-exclusion identities and Bonferroni inequalities with applications to reliability analysis of coherent systems. | 
| Reference: | [8] 
		: HASH(0x24285c0). Internet: citeseer.ist.psu.edu/550566.html. | 
| Reference: | [9] Dohmen, K., Tittman, P.: Inequalities of Bonferroni-Galambos type with applications to the Tutte polynomial and the chromatic polynomial.J. Inequal. in Pure and Appl. Math. 5 (2004), art. 64. MR 2084873 | 
| Reference: | [10] Gombay, E., Horváth, L.: Approximations for the time of change and the power function in change-point models.J. Statist. Plan. Infer. 52 (1996), 43–66. MR 1391683 | 
| Reference: | [11] Galambos, J.: Bonferroni inequalities.Ann. Prob. 5 (1997), 577–581. MR 0448478 | 
| Reference: | [12] Galambos, J., Simonelli, I.: Bonferroni-type Inequalities with Applications.Springer Verlag, Berlin 1996. Zbl 0869.60014, MR 1402242 | 
| Reference: | [13] Hladík, M., Černý, M.: New approach to interval linear regression.In: 24th Mini-EURO Conference On Continuous Optimization and Information-Based Technologies in The Financial Sector MEC EurOPT 2010, Selected Papers (R. Kasımbeyli et al., eds.), Technika, Vilnius (2010), 167–171. | 
| Reference: | [14] Sen, A., Srivastava, M.: On tests for detecting change in mean.Ann. Statist. 3 (1975), 98–108. Zbl 0399.62033, MR 0362649, 10.1214/aos/1176343001 | 
| Reference: | [15] Worsley, K.: Testing for a two-phase multiple regression.Technometrics 25 (1983), 35–42. Zbl 0508.62061, MR 0694210, 10.1080/00401706.1983.10487817 | 
| . |