| Title: | Orthocomplemented difference lattices with few generators (English) | 
| Author: | Matoušek, Milan | 
| Author: | Pták, Pavel | 
| Language: | English | 
| Journal: | Kybernetika | 
| ISSN: | 0023-5954 | 
| Volume: | 47 | 
| Issue: | 1 | 
| Year: | 2011 | 
| Pages: | 60-73 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | The algebraic theory of quantum logics overlaps in places with certain areas of cybernetics, notably with the field of artificial intelligence (see, e. g., [19, 20]). Recently an effort has been exercised to advance with logics that possess a symmetric difference ([13, 14]) - with so called orthocomplemented difference lattices (ODLs). This paper further contributes to this effort. In [13] the author constructs an ODL that is not set-representable. This example is quite elaborate. A main result of this paper somewhat economizes on this construction: There is an ODL with 3 generators that is not set-representable (and so the free ODL with 3 generators cannot be set-representable). The result is based on a specific technique of embedding orthomodular lattices into ODLs. The ODLs with 2 generators are always set-representable as we show by characterizing the free ODL with 2 generators - this ODL is ${\rm MO}_3 \times 2^4$. (English) | 
| Keyword: | orthomodular lattice | 
| Keyword: | quantum logic | 
| Keyword: | symmetric difference | 
| Keyword: | Gödel's coding | 
| Keyword: | Boolean algebra | 
| Keyword: | free algebra | 
| MSC: | 03G12 | 
| MSC: | 06C15 | 
| MSC: | 81B10 | 
| idZBL: | Zbl 1221.06011 | 
| idMR: | MR2807864 | 
| . | 
| Date available: | 2011-04-12T13:03:47Z | 
| Last updated: | 2013-09-22 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/141478 | 
| . | 
| Reference: | [1] Beran, L.: Orthomodular Lattices, Algebraic Approach.D. Reidel, Dordrecht, 1985. Zbl 0558.06008, MR 0784029 | 
| Reference: | [2] Bruns, G., Harding, J.: Algebraic aspects of orthomodular lattices.In: Current Research in Operational Quantum Logic (B. Coecke, D. Moore and A. Wilce, eds.), Kluwer Academic Publishers 2000, pp. 37–65. Zbl 0955.06003, MR 1907155 | 
| Reference: | [3] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra.Springer-Verlag, New York 1981. Zbl 0478.08001, MR 0648287 | 
| Reference: | [4] Chiara, M. L. Dalla, Giuntini, R., Greechie, R.: Reasoning in Quantum Theory: Sharp and Unsharp Quantum Logics.Kluwer Academic Publishers, Dordrecht, Boston, London 2004. MR 2069854 | 
| Reference: | [5] Dorfer, G., Dvurečenskij, A., Länger, H. M.: Symmetric difference in orthomodular lattices.Math. Slovaca 46 (1996), 435–444. MR 1451034 | 
| Reference: | [6] Dorfer, G.: Non-commutative symmetric differences in orthomodular lattices.Internat. J. Theoret. Phys. 44 (2005), 885–896. MR 2199505, 10.1007/s10773-005-7066-7 | 
| Reference: | [7] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures.Kluwer Acad. Publ., Dordrecht, and Ister Science, Bratislava 2000. MR 1861369 | 
| Reference: | [8] Godowski, R., Greechie, R. J.: Some equations related to states on orthomodular lattices.Demonstratio Math. XVII (1984), 1, 241–250. Zbl 0553.06013, MR 0760356 | 
| Reference: | [9] Greechie, R. J.: Orthomodular lattices admitting no states.J. Combinat. Theory 10 (1971), 119–132. Zbl 0219.06007, MR 0274355, 10.1016/0097-3165(71)90015-X | 
| Reference: | [10] Engesser, K., Gabbay, D.M., ed., D. Lehmann: Handbook of Quantum Logic and Quantum Structures.Elsevier 2007. MR 2408886 | 
| Reference: | [11] Havlík, F.: Ortokomplementární diferenční svazy (in Czech).(Mgr. Thesis, Department of Logic, Faculty of Arts, Charles University in Prague 2007). | 
| Reference: | [12] Kalmbach, G.: Orthomodular Lattices.Academic Press, London 1983. Zbl 0528.06012, MR 0716496 | 
| Reference: | [13] Matoušek, M.: Orthocomplemented lattices with a symmetric difference.Algebra Universalis 60 (2009), 185–215. Zbl 1186.06004, MR 2491422, 10.1007/s00012-009-2105-5 | 
| Reference: | [14] Matoušek, M., Pták, P.: Orthocomplemented posets with a symmetric difference.Order 26 (2009), 1–21. Zbl 1201.06006, MR 2487165, 10.1007/s11083-008-9102-8 | 
| Reference: | [15] Matoušek, M., Pták, P.: On identities in orthocomplemented difference lattices.Math. Slovaca 60 (2010), 5, 583–590. Zbl 1249.06025, MR 2728524, 10.2478/s12175-010-0033-7 | 
| Reference: | [16] Matoušek, M., Pták, P.: Symmetric difference on orthomodular lattices and $Z_2$-valued states.Comment. Math. Univ. Carolin. 50 (2009), 4, 535–547. Zbl 1212.06021, MR 2583131 | 
| Reference: | [17] Navara, M., Pták, P.: Almost Boolean orthomodular posets.J. Pure Appl. Algebra 60 (1989), 105–111. MR 1014608, 10.1016/0022-4049(89)90108-4 | 
| Reference: | [18] Park, E., Kim, M. M., Chung, J. Y.: A note on symmetric differences of orthomodular lattices.Commun. Korean Math. Soc. 18 (2003), 2, 207–214. Zbl 1101.06301, MR 1986740, 10.4134/CKMS.2003.18.2.207 | 
| Reference: | [19] Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics.Kluwer Academic Publishers, Dordrecht, Boston, London 1991. MR 1176314 | 
| Reference: | [20] Watanabe, S.: Modified concepts of logic, probability and integration based on generalized continuous characteristic function.Inform. and Control 2 (1969), 1–21. MR 0267964, 10.1016/S0019-9958(69)90581-6 | 
| . |