| Title:
|
Periodic solutions to a $p$-Laplacian neutral Rayleigh equation with deviating argument (English) |
| Author:
|
Du, Bo |
| Author:
|
Hu, Xueping |
| Language:
|
English |
| Journal:
|
Applications of Mathematics |
| ISSN:
|
0862-7940 (print) |
| ISSN:
|
1572-9109 (online) |
| Volume:
|
56 |
| Issue:
|
3 |
| Year:
|
2011 |
| Pages:
|
253-264 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
By using the coincidence degree theory, we study a type of $p$-Laplacian neutral Rayleigh functional differential equation with deviating argument to establish new results on the existence of $T$-periodic solutions. (English) |
| Keyword:
|
deviating argument |
| Keyword:
|
neutral |
| Keyword:
|
coincidence degree theory |
| MSC:
|
34B15 |
| MSC:
|
34B20 |
| MSC:
|
34B24 |
| MSC:
|
34K13 |
| MSC:
|
34K40 |
| MSC:
|
47N20 |
| idZBL:
|
Zbl 1224.34226 |
| idMR:
|
MR2800577 |
| DOI:
|
10.1007/s10492-011-0015-2 |
| . |
| Date available:
|
2011-05-17T08:23:22Z |
| Last updated:
|
2020-07-02 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141487 |
| . |
| Reference:
|
[1] Gaines, R. E., Mawhin, J. L.: Coincidence Degree, and Nonlinear Differential Equations.Springer Berlin (1977). Zbl 0339.47031, MR 0637067 |
| Reference:
|
[2] Hale, J.: Theory of Functional Differential Equations, 2nd ed.Springer New York (1977). Zbl 0352.34001, MR 0508721 |
| Reference:
|
[3] Komanovskij, V. B., Nosov, V. R.: Stability of Functional Differential Equations.Academic Press London (1986). MR 0860947 |
| Reference:
|
[4] Kuang, Y.: Delay Differential Equations: with Applications in Population Dynamics.Academic Press Boston (1993). Zbl 0777.34002, MR 1218880 |
| Reference:
|
[5] Liu, B., Huang, L.: Existence and uniqueness of periodic solutions for a kind of first order neutral functional differential equation.J. Math. Anal. Appl. 322 (2006), 121-132. MR 2238153, 10.1016/j.jmaa.2005.08.069 |
| Reference:
|
[6] Lu, S., Ren, J., Ge, W.: Problems of periodic solutions for a kind of second order neutral functional differential equation.Appl. Anal. 82 (2003), 411-426. Zbl 1044.34039, MR 1982886, 10.1080/0003681031000103013 |
| Reference:
|
[7] Lu, S., Ge, W.: Existence of periodic solutions for a kind of second-order neutral functional differential equation.Appl. Math. Comput. 157 (2004), 433-448. Zbl 1059.34043, MR 2088265, 10.1016/j.amc.2003.08.044 |
| Reference:
|
[8] Serra, E.: Periodic solutions for some nonlinear differential equations of neutral type.Nonlinear Anal., Theory Methods Appl. 17 (1991), 139-151. Zbl 0735.34066, MR 1118073, 10.1016/0362-546X(91)90217-O |
| Reference:
|
[9] Si, J.: Discussion on the periodic solutions for higher-order linear equation of neutral type equation with constant coefficients.Appl. Math. Mech., Engl. Ed. 17 (1996), 29-37. MR 1382460, 10.1007/BF00131292 |
| . |