Previous |  Up |  Next

Article

Title: On the number of limit cycles of a generalized Abel equation (English)
Author: Alkoumi, Naeem
Author: Torres, Pedro J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 1
Year: 2011
Pages: 73-83
Summary lang: English
.
Category: math
.
Summary: New results are proved on the maximum number of isolated $T$-periodic solutions (limit cycles) of a first order polynomial differential equation with periodic coefficients. The exponents of the polynomial may be negative. The results are compared with the available literature and applied to a class of polynomial systems on the cylinder. (English)
Keyword: periodic solution
Keyword: limit cycle
Keyword: polynomial nonlinearity
MSC: 34C07
MSC: 34C25
idZBL: Zbl 1224.34097
idMR: MR2782760
DOI: 10.1007/s10587-011-0018-x
.
Date available: 2011-05-23T12:31:53Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141519
.
Reference: [1] Álvarez, A., Bravo, J.-L., Fernández, M.: The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign.Commun. Pure Appl. Anal. 8 (2009), 1493-1501. MR 2505282, 10.3934/cpaa.2009.8.1493
Reference: [2] Álvarez, M. J., Gasull, A., Giacomini, H.: A new uniqueness criterion for the number of periodic orbits of Abel equations.J. Differ. Equations 234 (2007), 161-176. MR 2298969, 10.1016/j.jde.2006.11.004
Reference: [3] Álvarez, M. J., Gasull, A., Prohens, R.: On the number of limit cycles of some systems on the cylinder.Bull. Sci. Math. 131 (2007), 620-637. MR 2391338, 10.1016/j.bulsci.2006.04.005
Reference: [4] Alwash, M. A. M.: Periodic solutions of polynomial non-autonomous differential equations.Electron. J. Differ. Equ. 2005 (2005), 1-8. Zbl 1075.34514, MR 2162245
Reference: [5] Alwash, M. A. M.: Periodic solutions of Abel differential equations.J. Math. Anal. Appl. 329 (2007), 1161-1169. Zbl 1154.34397, MR 2296914, 10.1016/j.jmaa.2006.07.039
Reference: [6] Cherkas, L A.: Number of limit cycles of an autonomous second-order system.Differ. Equations 12 (1976), 666-668.
Reference: [7] Gasull, A., Guillamon, A.: Limit cycles for generalized Abel equations.Int. J. Bifurcation Chaos Appl. Sci. Eng. 16 (2006), 3737-3745. Zbl 1140.34348, MR 2295352, 10.1142/S0218127406017130
Reference: [8] Gasull, A., Llibre, J.: Limit cycles for a class of Abel equations.SIAM J. Math. Anal. 21 (1990), 1235-1244. Zbl 0732.34025, MR 1062402, 10.1137/0521068
Reference: [9] Gasull, A., Torregrosa, J.: Exact number of limit cycles for a family of rigid systems.Proc. Am. Math. Soc. 133 (2005), 751-758. Zbl 1062.34030, MR 2113924, 10.1090/S0002-9939-04-07542-2
Reference: [10] Korman, P., Ouyang, T.: Exact multiplicity results for two classes of periodic equations.J. Math. Anal. Appl. 194 (1995), 763-379. Zbl 0844.34036, MR 1350195, 10.1006/jmaa.1995.1328
Reference: [11] Lins-Neto, A.: On the number of solutions of the equation $\sum\nolimits_{j=0}^{n}a_j(t)x^j$, $0\leq t\leq 1$, for which $x(0)=x(1)$.Invent. Math. 59 (1980), 69-76.
Reference: [12] Nkashama, M. N.: A generalized upper and lower solutions method and multiplicity results for nonlinear first-order ordinary differential equations.J. Math. Anal. Appl. 140 (1989), 381-395. Zbl 0674.34009, MR 1001864, 10.1016/0022-247X(89)90072-3
Reference: [13] Pliss, V. A.: Nonlocal Problems of the Theory of Oscillations.Academic Press New York (1966). Zbl 0151.12104, MR 0196199
Reference: [14] Sandqvist, A., Andersen, K. M.: On the number of closed solutions to an equation ${\dot x}=f(t,x)$, where $f_{x^n}(t,x)\geq 0$ ($n=1,2, {or} 3$).J. Math. Anal. Appl. 159 (1991), 127-146. MR 1119425, 10.1016/0022-247X(91)90225-O
.

Files

Files Size Format View
CzechMathJ_61-2011-1_7.pdf 255.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo