Previous |  Up |  Next


$\Gamma $-convergence; oscillatory behaviour; Young measure; conjugate functional
We study an example in two dimensions of a sequence of quadratic functionals whose limit energy density, in the sense of $\Gamma $-convergence, may be characterized as the dual function of the limit energy density of the sequence of their dual functionals. In this special case, $\Gamma $-convergence is indeed stable under the dual operator. If we perturb such quadratic functionals with linear terms this statement is no longer true.
[1] Ball, J.: A version of the fundamental theorem of Young measures. PDEs and continuum models of phase transitions. Lectures Notes in Physics 344. Springer, Berlin (1989). DOI 10.1007/BFb0024945 | MR 1036070
[2] Braides, A.: $\Gamma$-convergence for Beginners. Oxford University Press, Oxford (2002). MR 1968440 | Zbl 1198.49001
[3] Braides, A., Defranceschi, A.: Homogenization of Multiple Integrals. Oxford University Press (1998). MR 1684713 | Zbl 0911.49010
[4] Cioranescu, D., Donato, P.: An Introduction to Homogenization. Oxford University Press, Oxford (1999). MR 1765047 | Zbl 0939.35001
[5] Maso, G. Dal: An Introduction to $\Gamma$-Convergence. Birkhäuser, Basel (1993). MR 1201152
[6] Giorgi, E. De, Franzoni, T.: Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei VIII. Ser, Rend. Cl. Sci. Mat. 58 (1975), Italien 842-850. MR 0448194 | Zbl 0339.49005
[7] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Springer, Berlin (1986). MR 0851383 | Zbl 0585.65077
[8] Jikov, V. V., Kozlov, S. M., Oleinik, O. A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994). MR 1329546
[9] Pedregal, P.: Parametrized Measures and Variational Principles. Birkäuser, Basel (1997). MR 1452107 | Zbl 0879.49017
[10] Pedregal, P.: $\Gamma$-convergence through Young measures. SIAM J. Math. Anal. 36 (2004), 423-440. DOI 10.1137/S0036141003425696 | MR 2111784 | Zbl 1077.49012
[11] Pedregal, P., Serrano, H.: $\Gamma$-convergence of quadratic functionals with oscillatory linear perturbations. Nonlinear Anal., Theory Methods Appl. 70 (2009), 4178-4189. DOI 10.1016/ | MR 2514750
[12] Serrano, H.: On $\Gamma$-convergence in divergence-free fields through Young measures. J. Math. Anal. Appl. 359 (2009), 311-321. DOI 10.1016/j.jmaa.2009.05.056 | MR 2542177 | Zbl 1167.49016
[13] Young, L. C.: Lectures on the Calculus of Variations and Optimal Control Theory. Launders Company, Philadelphia (1980).
Partner of
EuDML logo