[1] Albiac, F., Kalton, N. J.: 
Topics in Banach Space Theory. Graduate Texts in Mathematics, Vol. 233. Springer Berlin (2006). 
MR 2192298[3] Brze{'z}niak, Z.: 
Stochastic partial differential equations in $M$-type 2 Banach spaces. Potential Anal. 4 (1995), 1-45. 
DOI 10.1007/BF01048965 | 
MR 1313905[5] Brze{'z}niak, Z., Hausenblas, E.: 
Maximal regularity for stochastic convolutions driven by Lévy processes. Probab. Theory Relat. Fields 145 (2009), 615-637. 
DOI 10.1007/s00440-008-0181-7 | 
MR 2529441[6] Brze'zniak, Z., Peszat, S.: 
Maximal inequalities and exponential estimates for stochastic convolutions in Banach spaces. Stochastic Processes, Physics and Geometry: New Interplays I (Leipzig, 1999). CMS Conf. Proc., Vol. 28 American Mathematical Society Providence (2000), 55-64. 
MR 1803378[8] Cox, S. G., Veraar, M. C.: 
Vector-valued decoupling and the Burkholder-Davis-Gundy inequality. (2010), (to appear) Ill. J. Math. 
MR 3006692[9] Prato, G. Da, Zabczyk, J.: 
Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, Vol. 44 Cambridge University Press Cambridge (1992). 
MR 1207136 | 
Zbl 0761.60052[11] Denk, R., Dore, G., Hieber, M., Prüss, J., Venni, A.: 
New thoughts on old results of R. T. Seeley. Math. Ann. 328 (2004), 545-583. 
MR 2047641[12] Deville, R., Godefroy, G., Zizler, V.: 
Smoothness and Renormings in Banach Spaces. Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 64. Longman Scientific & Technical Harlow (1993). 
MR 1211634[15] Haase, M.: 
The Functional Calculus for Sectorial Operators. Operator Theory: Advances and Applications, Vol. 169. Birkhäuser Basel (2006). 
MR 2244037[18] Hytönen, T., Neerven, J. van, Portal, P.: 
Conical square function estimates in {UMD} Banach spaces and applications to $H^\infty$-functional calculi. J. Anal. Math. 106 (2008), 317-351. 
DOI 10.1007/s11854-008-0051-3 | 
MR 2448989[19] Kalton, N. J., Weis, L. W.: The $H^\infty$-calculus and square function estimates. Preprint (2004).
[20] Kunstmann, P. C., Weis, L. W.: 
Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H_\infty$-functional calculus. Functional Analytic Methods for Evolution Equations. Lecture Notes Math., Vol. 1855 Springer Berlin (2004), 65-311. 
DOI 10.1007/978-3-540-44653-8_2 | 
MR 2108959 | 
Zbl 1097.47041[21] Langer, M., Maz'ya, V.: 
On $L^p$-contractivity of semigroups generated by linear partial differential operators. J. Funct. Anal. 164 (1999), 73-109. 
DOI 10.1006/jfan.1999.3393 | 
MR 1694522[22] Lenglart, E.: 
Rélation de domination entre deux processus. Ann. Inst. Henri Poincaré, Nouv. Sér, Sect. B 13 (1977), 171-179 French. 
MR 0471069 | 
Zbl 0373.60054[24] McIntosh, A.: 
Operators which have an $H_\infty$ functional calculus. Miniconference Operator Theory and Partial Differential Equations (North Ryde, 1986), Proc. Cent. Math. Anal. Austr. Nat. Univ., Vol. 14 Austr. Nat. Univ. Canberra (1986), 210-231. 
MR 0912940[25] Neerven, J. M. A. M. van: 
$\gamma$-Radonifying operators---a survey. Spectral Theory and Harmonic Analysis (Canberra, 2009). Proc. Cent. Math. Anal. Austr. Nat. Univ., Vol. 44 Austral. Nat. Univ. Canberra (2010), 1-62. 
MR 2655391[28] Neerven, J. M. A. M. van, Weis, L.: 
Weak limits and integrals of Gaussian covariances in Banach spaces. Probab. Math. Stat. 25 (2005), 55-74. 
MR 2211356[31] Pisier, G.: 
Some results on Banach spaces without local unconditional structure. Compos. Math. 37 (1978), 3-19. 
MR 0501916 | 
Zbl 0381.46010[32] Rosiński, J., Suchanecki, Z.: 
On the space of vector-valued functions integrable with respect to the white noise. Colloq. Math. 43 (1980), 183-201. 
DOI 10.4064/cm-43-1-183-201 | 
MR 0615985[33] Seidler, J.: 
Exponential estimates for stochastic convolutions in 2-smooth Banach spaces. Electron. J. Probab. 15 (2010), 1556-1573. 
DOI 10.1214/EJP.v15-808 | 
MR 2735374[34] Suárez, J., Weis, L.: 
Interpolation of Banach spaces by the $\gamma$-method. Methods in Banach space theory. London Math. Soc. Lecture Note Series Vol. 337. Proc. Conf. on Banach Spaces, Cácres, Spain, Sept. 13-18, 2004 J. M. F. Castillo Cambridge Univ. Press Cambridge (2006), 293-306. 
MR 2326391[35] Triebel, H.: 
Interpolation Theory, Function Spaces, Differential Operators, 2nd ed. Barth Leipzig (1995). 
MR 1328645[37] Weis, L. W.: 
The $H^\infty$ holomorphic functional calculus for sectorial operators---a survey. Partial differential equations and functional analysis. Oper. Theory Adv. Appl., Vol. 168 Birkhäuser Basel (2006), 263-294. 
DOI 10.1007/3-7643-7601-5_16 | 
MR 2240065 | 
Zbl 1111.47020