Previous |  Up |  Next


Title: Perfect compactifications of frames (English)
Author: Baboolal, Dharmanand
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 3
Year: 2011
Pages: 845-861
Summary lang: English
Category: math
Summary: Perfect compactifications of frames are introduced. It is shown that the Stone-Čech compactification is an example of such a compactification. We also introduce rim-compact frames and for such frames we define its Freudenthal compactification, another example of a perfect compactification. The remainder of a rim-compact frame in its Freudenthal compactification is shown to be zero-dimensional. It is shown that with the assumption of the Boolean Ultrafilter Theorem the Freudenthal compactification for spaces, as well as the Freudenthal-Morita Theorem for spaces, can be obtained from our frame constructions. (English)
Keyword: perfect compactifications
Keyword: rim-compact frame
MSC: 06B35
MSC: 06D20
MSC: 54D35
idZBL: Zbl 1249.06027
idMR: MR2853096
DOI: 10.1007/s10587-011-0032-z
Date available: 2011-09-22T14:51:54Z
Last updated: 2016-04-07
Stable URL:
Reference: [1] Baboolal, D., Banaschewski, B.: Compactification and local connectedness of frames.J. Pure Appl. Algebra 70 (1991), 3-16. Zbl 0722.54031, MR 1100502, 10.1016/0022-4049(91)90003-K
Reference: [2] Banaschewski, B.: Lectures on Frames.University of Cape Town Cape Town (1987).
Reference: [3] Banaschewski, B.: Compactification of frames.Math. Nachr. 149 (1990), 105-115. Zbl 0722.54018, MR 1124796, 10.1002/mana.19901490107
Reference: [4] Banaschewski, B., Pultr, A.: Samuel compactification and completion of uniform frames.Math. Proc. Camb. Philos. Soc. 108 (1990), 63-78. Zbl 0733.54020, MR 1049760, 10.1017/S030500410006895X
Reference: [5] Banaschewski, B., Mulvey, C. J.: Stone-Čech compactification of locales I.Houston J. Math. 6 (1980), 301-312. Zbl 0473.54026, MR 0597771
Reference: [6] Freudenthal, H.: Kompaktisierungen und Bikompaktisierungen.Nederl. Akad. Wet., Proc. Ser. A 54 (1951), 184-192 German. Zbl 0043.16501, MR 0040646
Reference: [7] Isbell, J. R.: Uniform Spaces.American Mathematical Society (AMS) Providence (1964). Zbl 0124.15601, MR 0170323
Reference: [8] Johnstone, P. T.: Stone Spaces.Cambridge University Press Cambridge (1982). Zbl 0499.54001, MR 0698074
Reference: [9] Morita, K.: On bicompactifications of semibicompact spaces.Sci. Rep. Tokyo Bunrika Daigaku, Sect. A. 4 (1952), 222-229. Zbl 0049.39801, MR 0052089
Reference: [10] Schechter, E.: Handbook of Analysis and its Foundations.Academic Press San Diego (1997). Zbl 0943.26001, MR 1417259
Reference: [11] Sklyarenko, E. G.: Some questions in the theory of bicompactifications.Am. Math. Soc. Transl. 58 (1966), 216-244.
Reference: [12] Thron, W. J.: Topological Structures.Holt, Rinehart and Winston New York-Chicago-San Francisco-Toronto-London (1966). Zbl 0137.15402, MR 0200892
Reference: [13] Willard, S.: General Topology.Addison-Wesley Reading (1970). Zbl 0205.26601, MR 0264581


Files Size Format View
CzechMathJ_61-2011-3_20.pdf 277.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo