[1] Butcher, J. C.: 
The Numerical Analysis of Ordinary Differential Equation: Runge Kutta and General Linear Methods.  Wiley, Chichester, 1987. 
MR 0878564[2] Butcher, J. C.: 
High Order A-stable Numerical Methods for Stiff Problems.  Journal of Scientific Computing 25 (2005), 51–66. 
MR 2231942 | 
Zbl 1203.65106[4] Butcher, J. C.: 
Forty-five years of A-stability.  In: Numerical Analysis and Applied Mathematics: International Conference on Numerical Analysis and Applied Mathematics 2008. AIP Conference Proceedings 1048 (2008). 
MR 2598780[5] Butcher, J. C.: 
Numerical Methods for Ordinary Differential Equations.  sec. edi., Wiley, Chichester, 2008. 
MR 2401398 | 
Zbl 1167.65041[11] Enright, W. H., Hull, T. E., Linberg, B.: 
Comparing numerical Methods for Stiff of ODEs systems.  BIT 15 (1975), 1–48. 
DOI 10.1007/BF01932994[12] Fatunla, S. O.: Numerical Methods for Initial Value Problems in ODEs.  Academic Press, New York, 1978.
[13] Gear, C. W.: 
The automatic integration of stiff ODEs.  In: Morrell, A.J.H. (ed.) Information processing 68: Proc. IFIP Congress, Edinurgh, 1968 Nort-Holland, Amsterdam, 1968, 187–193. 
MR 0260180[15] Hairer, E., Wanner, G.: 
Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems.  Springer-Verlag, Berlin, 1996. 
MR 1439506 | 
Zbl 0859.65067[17] Ikhile, M. N. O., Okuonghae, R. I.: Stiffly stable continuous extension of second derivative LMM with an off-step point for IVPs in ODEs.  J. Nig. Assoc. Math. Phys. 11 (2007), 175–190.
[18] Lambert, J. D.: 
Numerical Methods for Ordinary Differential Systems. The Initial Value Problems.  Wiley, Chichester, 1991. 
MR 1127425[19] Lambert, J. D.: 
Computational Methods for Ordinary Differential Systems. The Initial Value Problems.  Wiley, Chichester, 1973. 
MR 0423815[20] Okuonghae, R. I.: Stiffly Stable Second Derivative Continuous LMM for IVPs in ODEs.  Ph.D. Thesis, Dept. of Maths. University of Benin, Benin City. Nigeria, 2008.