Previous |  Up |  Next

Article

Title: Existence Principles for Singular Vector Nonlocal Boundary Value Problems with $\phi $-Laplacian and their Applications (English)
Author: Staněk, Svatoslav
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 50
Issue: 1
Year: 2011
Pages: 99-118
Summary lang: English
.
Category: math
.
Summary: Existence principles for solutions of singular differential systems$ (\phi (u^{\prime }))^{\prime }=f(t,u,u^{\prime }) $ satisfying nonlocal boundary conditions are stated. Here $\phi $ is a homeomorphism $\mathbb {R}^N$ onto $\mathbb {R}^N$ and the Carathéodory function $f$ may have singularities in its space variables. Applications of the existence principles are given. (English)
Keyword: singular boundary value problem
Keyword: system of differential equations
Keyword: nonlocal boundary condition
Keyword: existence principle
Keyword: positive solution
Keyword: $\phi $-Laplacian
Keyword: Leray–Schauder degree
MSC: 34B16
MSC: 34B18
MSC: 47H11
idZBL: Zbl 1258.34045
idMR: MR2920702
.
Date available: 2011-12-08T09:53:53Z
Last updated: 2013-09-18
Stable URL: http://hdl.handle.net/10338.dmlcz/141717
.
Reference: [1] Agarwal, R. P., O’Regan, D., Staněk, S.: Positive solutions of nonlocal boundary value problems. Glasg. Math. J. 46, 3 (2004), 537–550. MR 2094809, 10.1017/S0017089504001983
Reference: [2] Agarwal, R. P., O’Regan, D., Staněk, S.: Solvability of singular Dirichlet boundary-value problems with given maximal values for positive solutions. Proc. Eding. Math. Soc. 48, 2 (2005), 1–19. Zbl 1066.34017, MR 2117708, 10.1017/S0013091503000774
Reference: [3] Agarwal, R. P., O’Regan, D., Staněk, S.: General existence principles for nonlocal boundary value problems with $\phi $-Laplacian and their applications. Abstr. Appl. Anal. 2006, ID 96826, 1–30. MR 2211656
Reference: [4] Amster, P., De Nápoli, P.: Landesman–Lazer type conditions for a system of $p$-Laplacian like operators. J. Math. Anal. Appl. 326, 2 (2007), 1236–1243. Zbl 1119.34010, MR 2280977, 10.1016/j.jmaa.2006.04.001
Reference: [5] Bartle, R. G.: A Modern Theory of Integration. AMS Providence, Rhode Island, 2001. Zbl 0968.26001, MR 1817647
Reference: [6] Cabada, A., Pouso, R. L.: Existence theory for functional p-Laplacian equations with variable exponents. Nonlinear Anal. 52, 2 (2003), 557–572. Zbl 1029.34018, MR 1937640, 10.1016/S0362-546X(02)00122-0
Reference: [7] Chu, J., O’Regan, D.: Multiplicity results for second order non-autonomous singular Dirichlet systems. Acta Appl. Math. 105 (2008), 323–338. MR 2481085, 10.1007/s10440-008-9277-4
Reference: [8] Dambrosio, W.: Multiple solutions of weakly-coupled systems with $p$-Laplacian operators. Result. Math. 36, 1-2 (1999), 34–54. Zbl 0942.34015, MR 1706481, 10.1007/BF03322100
Reference: [9] Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin, 1985. Zbl 0559.47040, MR 0787404
Reference: [10] Fan, X. L., Fan, X.: A Knobloch-type result for $p(t)$-Laplacian systems. J. Math. Anal. Appl. 282, 2 (2003), 453–464. Zbl 1033.34023, MR 1989103, 10.1016/S0022-247X(02)00376-1
Reference: [11] Fan, X. L., Wu, H. Q., Wang, F. Z.: Hartman-type results for $p(t)$-Laplacian systems. Nonlinear Anal. 52 (2003), 585–594. Zbl 1025.34017, MR 1937642, 10.1016/S0362-546X(02)00124-4
Reference: [12] Hewitt, E., Stromberg, K.: Real and Abstract Analysis. Springer, New York, 1965. Zbl 0137.03202, MR 0367121
Reference: [13] Jebelean, P., Precup, R.: Solvability of $p,q$-Laplacian systems with potential boundary conditions. Appl. Anal. 89, 2 (2010), 221–228. Zbl 1189.34040, MR 2598811, 10.1080/00036810902889567
Reference: [14] Liu, W., Liu, L., Wu, Y.: Positive solutions of singular boundary value problem for systems of second-order differential equations. Appl. Math. Comput. 208 (2008), 511–519. 10.1016/j.amc.2008.12.019
Reference: [15] Lü, H., O’Regan, D., Agarwal, R. P.: Positive radial solutions for a quasilinear system. Appl. Anal. 85 (2006), 4, 363–371. Zbl 1100.34018, MR 2196675, 10.1080/00036810500334339
Reference: [16] Manásevich, R., Mawhin, J.: Periodic solutions for nonlinear systems with $p$-Laplacian like operators. J. Differential Equations 8 (1998), 367–393. 10.1006/jdeq.1998.3425
Reference: [17] Manásevich, R., Mawhin, J.: Boundary value problems for nonlinear perturbations of vector $p$-Laplacian-like operators. J. Korean Math. Soc. 37, 5 (2000), 665–685. MR 1783579
Reference: [18] Mawhin, J.: Some boundary value problems for Hartman-type perturbations of ordinary vector $p$-Laplacian. Nonlinear Anal. 40 (2000), 497–503. MR 1768905, 10.1016/S0362-546X(00)85028-2
Reference: [19] Mawhin, J., Ureña, A. J.: A Hartman-Nagumo inequality for the vector ordinary p-Laplacian and applications to nonlinear boundary value problems. J. Inequal. Appl. 7, 5 (2002), 701–725. Zbl 1041.34011, MR 1931262
Reference: [20] Nowakowski, A., Orpel, A.: Positive solutions for nonlocal boundary-value problem with vector-valued response. Electronic J. Diff. Equations 2002, 46 (2002), 1–15.
Reference: [21] del Pino, M. A., Manásevich, R. F.: $T$-periodic solutions for a second order system with singular nonlinearities. Differential Integral Equations 8 (1995), 1873–1883. MR 1347988
Reference: [22] Rachůnková, I., Staněk, S.: General existence principle for singular BVPs and its application. Georgian Math. J. 11, 3 (2004), 549–565. Zbl 1059.34016
Reference: [23] Rachůnková, I., Staněk, S., Tvrdý, M.: Singularities and Laplacians in boundary value problems for nonlinear differential equations. In: Handbook of Differential Equations, Ordinary Differential Equations, Vol. 3 (Edited by A. Cañada, P. Drábek, A. Fonda), 607–723, Elsevier, Amsterdam, 2006. 10.1016/S1874-5725(06)80011-8
Reference: [24] Rachůnková, I., Staněk, S., Tvrdý, M.: Solvability of Nonlinear Singular Problems for Ordinary Differential Equations. Hindawi, New York, 2008. Zbl 1228.34003, MR 2572243
Reference: [25] Staněk, S.: Multiple solutions of nonlinear functional boundary value problems. Arch. Math. 74 (2000), 452–466. MR 1753544, 10.1007/PL00000426
Reference: [26] Staněk, S.: Multiple solutions for some functional boundary value problems. Nonlinear Anal. 32 (1998), 427–438. MR 1610598, 10.1016/S0362-546X(97)00484-7
Reference: [27] Staněk, S.: A nonlocal boundary value problem with singularities in phase variables. Math. Comput. Modelling 40, 1-2 (2004), 101–116. Zbl 1068.34019, MR 2091529, 10.1016/j.mcm.2003.11.003
Reference: [28] Staněk, S.: A nonlocal singular boundary value problem for second-order differential equations. Math. Notes (Miskolc) 5, 1 (2004), 91–104. Zbl 1048.34041, MR 2040979
Reference: [29] Staněk, S.: Existence principles for higher order nonlocal boundary-value problems and their applications to singular Sturm–Liouville problems. Ukr. Mat. J. 60 (2008), 240–259. Zbl 1164.34341, MR 2424641
Reference: [30] Šeda, V.: A correct problem at resonance. Differ. Integral Equ. 2, 4 (1989), 389–396. MR 0996746
Reference: [31] Šeda, V.: On correctness of the generalized boundary value problems for systems of ordinary differential equations. Arch. Math. (Brno) 26, 2-3 (1990), 181–185. MR 1188278
Reference: [32] Zhang, M.: Nonuniform nonresonance at the first eigenvalue of the $p$-Laplacian. Nonlinear Anal. 29, 1 (1997), 41–51. Zbl 0876.35039, MR 1447568, 10.1016/S0362-546X(96)00037-5
Reference: [33] Wei, Z.: Positive solution of singular Dirichlet boundary value problems for second order differential system. J. Math. Anal. Appl. 328 (2007), 1255–1267. MR 2290050, 10.1016/j.jmaa.2006.06.053
.

Files

Files Size Format View
ActaOlom_50-2011-1_9.pdf 316.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo