| Title: | Optimal Convective Heat-Transport (English) | 
| Author: | Dalík, Josef | 
| Author: | Přibyl, Oto | 
| Language: | English | 
| Journal: | Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica | 
| ISSN: | 0231-9721 | 
| Volume: | 50 | 
| Issue: | 2 | 
| Year: | 2011 | 
| Pages: | 13-18 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | The one-dimensional steady-state convection-diffusion problem for the unknown temperature $y(x)$ of a medium entering the interval $(a,b)$ with the temperature $y_{\min }$ and flowing with a positive velocity $v(x)$ is studied. The medium is being heated with an intensity corresponding to $y_{\max }-y(x)$ for a constant $y_{\max }>y_{\min }$. We are looking for a velocity $v(x)$ with a given average such that the outflow temperature $y(b)$ is maximal and discuss the influence of the boundary condition at the point $b$ on the “maximizing” function $v(x)$. (English) | 
| Keyword: | convective heat-transport | 
| Keyword: | two-point convection-diffusion boundary-value problem | 
| Keyword: | optimization of the amount of heat | 
| MSC: | 34B05 | 
| MSC: | 65L10 | 
| idZBL: | Zbl 1244.76022 | 
| idMR: | MR2920704 | 
| . | 
| Date available: | 2011-12-16T14:42:32Z | 
| Last updated: | 2013-09-18 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/141749 | 
| . | 
| Reference: | [1] Deuflhard, P., Weiser, M.: Numerische Matematik 3, Adaptive Lösung partieller Differentialgleichungen. De Gruyter, Berlin, 2011. MR 2779847 | 
| Reference: | [2] Ferziger, J. H., Perić, M.: Computational Methods for Fluid Dynamics. Springer, Berlin, 2002, 3rd Edition. Zbl 0998.76001, MR 1384758 | 
| Reference: | [3] Kamke, E.: Handbook on Ordinary Differential Equations. Nauka, Moscow, 1971, (in Russian). | 
| Reference: | [4] Roos, H.-G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin, 1996. Zbl 0844.65075, MR 1477665 | 
| . |