| Title:
|
On local isometric immersions into complex and quaternionic projective spaces (English) |
| Author:
|
Rivertz, Hans Jakob |
| Language:
|
English |
| Journal:
|
Archivum Mathematicum |
| ISSN:
|
0044-8753 (print) |
| ISSN:
|
1212-5059 (online) |
| Volume:
|
47 |
| Issue:
|
4 |
| Year:
|
2011 |
| Pages:
|
251-256 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
We will prove that if an open subset of $\mathbb{C}{}P^{n}$ is isometrically immersed into $\mathbb{C}{}P^{m}$, with $m<(4/3)n-2/3$, then the image is totally geodesic. We will also prove that if an open subset of $\mathbb{H}{}P^{n}$ isometrically immersed into $\mathbb{H}{}P^{m}$, with $m<(4/3)n-5/6$, then the image is totally geodesic. (English) |
| Keyword:
|
submanifolds |
| Keyword:
|
homogeneous spaces |
| Keyword:
|
symmetric spaces |
| MSC:
|
53C40 |
| idZBL:
|
Zbl 1249.53079 |
| idMR:
|
MR2876947 |
| . |
| Date available:
|
2011-12-16T15:12:20Z |
| Last updated:
|
2013-09-19 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141773 |
| . |
| Reference:
|
[1] Agaoka, Y.: A note on local isometric imbeddings of complex projective spaces.J. Math. Kyoto Univ. 27 (3) (1987), 501–505. Zbl 0633.53080, MR 0910231 |
| Reference:
|
[2] Agaoka, Y., Kaneda, E.: On local isometric immersions of Riemannian symmetric spaces.Tôhoku Math. J. 36 (1984), 107–140. Zbl 0533.53052, MR 0733623, 10.2748/tmj/1178228907 |
| Reference:
|
[3] Bourguignon, J., Karcher, H.: Curvature operators pinching estimates and geometric examples.Ann. Sci. École Norm. Sup. (4) 11 (1978), 71–92. Zbl 0386.53031, MR 0493867 |
| Reference:
|
[4] Dajczer, M., Rodriguez, L.: On isometric immersions into complex space forms.VIII School on Differential Geometry (Portuguese) (Campinas, 1992), vol. 4, Mat. Contemp., 1993, pp. 95–98. Zbl 0852.53044, MR 1302494 |
| Reference:
|
[5] Dajczer, M., Rodriguez, L.: On isometric immersions into complex space forms.Math. Ann. 299 (1994), 223–230. Zbl 0806.53019, MR 1275765, 10.1007/BF01459781 |
| Reference:
|
[6] Gray, A.: A note on manifolds whose holonomy group is a subgroup of $Sp(n)\cdot Sp(1)$.Michigan Math. J. 16 (1969), 125–128. MR 0244913 |
| Reference:
|
[7] Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces.Academic Press, New York, San Francisco and London, 1978, Ch. 4. Zbl 0451.53038, MR 0514561 |
| Reference:
|
[8] Küpelî, D. N.: Notes on totally geodesic Hermitian subspaces of indefinite Kähler manifolds.Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 43 (1) (1995), 1–7. MR 1338255 |
| Reference:
|
[9] Rivertz, H. J.: On isometric and conformal immersions into Riemannian spaces.Ph.D. thesis, Department of Mathematics, University of Oslo, 1999. |
| Reference:
|
[10] Tomter, P.: Isometric immersions into complex projective space.Lie groups, geometric structures and differential equations—one hundred years after Sophus Lie, vol. 37, Adv. Stud. Pure Math., 2002, pp. 367–396. Zbl 1043.53047, MR 1980909 |
| Reference:
|
[11] Wolf, J. A.: Correction to: The geometry and structure of isotropy irreducible homogeneous spaces.Acta Math. 152 (1984), 141–152. Zbl 0539.53037, MR 0736216, 10.1007/BF02392195 |
| . |