Previous |  Up |  Next

Article

Keywords:
hypermap; regular covering; chirality group; chirality index; toroidal hypermaps
Summary:
We prove that if the Walsh bipartite map $\mathcal {M}=\mathcal {W}(\mathcal {H})$ of a regular oriented hypermap $\mathcal {H}$ is also orientably regular then both $\mathcal {M}$ and $\mathcal {H}$ have the same chirality group, the covering core of $\mathcal {M}$ (the smallest regular map covering $\mathcal {M}$) is the Walsh bipartite map of the covering core of $\mathcal {H}$ and the closure cover of $\mathcal {M}$ (the greatest regular map covered by $\mathcal {M}$) is the Walsh bipartite map of the closure cover of $\mathcal {H}$. We apply these results to the family of toroidal chiral hypermaps $(3,3,3)_{b,c}=\mathcal {W}^{-1}\{6,3\}_{b,c}$ induced by the family of toroidal bipartite maps $\{6,3\}_{b,c}$.
References:
[1] Breda, A., d'Azevedo, A. Breda, Nedela, R.: Chirality group and chirality index of Coxeter chiral maps. Ars Comb. 81 (2006), 147-160. MR 2267808
[2] d'Azevedo, A. Breda: A theory of restricted regularity of hypermaps. J. Korean Math. Soc. 43 (2006), 991-1018. DOI 10.4134/JKMS.2006.43.5.991 | MR 2303613
[3] d'Azevedo, A. Breda, Jones, G. A.: Double coverings and reflexive abelian hypermaps. Beitr. Algebra Geom. 41 (2000), 371-389. MR 1801428
[4] d'Azevedo, A. Breda, Jones, G., Nedela, R., Škoviera, M.: Chirality groups of maps and hypermaps. J. Algebr. Comb. 29 (2009), 337-355. DOI 10.1007/s10801-008-0138-z | MR 2496311
[5] d'Azevedo, A. Breda, Nedela, R.: Chiral hypermaps of small genus. Beitr. Algebra Geom. 44 (2003), 127-143. MR 1990988
[6] Corn, D., Singerman, D.: Regular hypermaps. Eur. J. Comb. 9 (1988), 337-351. DOI 10.1016/S0195-6698(88)80064-7 | MR 0950053 | Zbl 0665.57002
[7] Coxeter, H. S. M., Moser, W. O. J.: Generators and Relations for Discrete Groups 4th ed. Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. 14. Springer-Verlag, Berlin/Heidelberg/New York (1980). MR 0562913 | Zbl 0422.20001
[8] Garbe, D.: Über die regulären Zerlegungen geschlossener orientierbarer Flächen. J. Reine Angew. Math. 237 (1969), 39-55. MR 0246198 | Zbl 0176.22203
[9] Johnson, D. L.: Presentations of Groups. London Mathematical Society Student Texts 15, Cambridge University Press, Cambridge (1990). MR 1056695 | Zbl 0696.20027
[10] Jones, G. A.: Graph imbeddings, groups, and Riemann surfaces. Algebraic methods in graph theory, Conf. Szeged 1978, Colloq. Math. Soc. Janos Bolyai 25, North-Holland, Amsterdam (1981), 297-311. MR 0642049 | Zbl 0473.05028
[11] Jones, G. A., Singerman, D.: Maps, hypermaps and triangle groups. The Grothendieck theory of dessins d'enfants. Cambridge: Cambridge University Press. Lond. Math. Soc. Lect. Note Ser. 200 (1994), 115-145. MR 1305395 | Zbl 0833.20045
[12] Nostrand, B., Schulte, E., Weiss, A. I.: Constructions of chiral polytopes. Congr. Numerantium 97 (1993), 165-170. MR 1267328 | Zbl 0812.51017
[13] Schulte, E., Weiss, A. I.: Chiral polytopes. Applied geometry and discrete mathematics, Festschr. Victor Klee, DIMACS Ser. Discret. Math. Theor. Comput. Sci. 4 (1991), 493-516. MR 1116373 | Zbl 0741.51019
[14] Sherk, F. A.: A family of regular maps of type $\{6,6\}$. Can. Math. Bull. 5 (1962), 13-20. DOI 10.4153/CMB-1962-003-7 | MR 0137030 | Zbl 0101.40902
[15] Thomson, W.: The Robert Boyle Lecture, Oxford University Junior Scientific Club. May 16, 1893, reprinted in Baltimore Lectures (C. J. Clay & Sons, London, 1904).
[16] Walsh, T. R. S.: Hypermaps versus bipartite maps. J. Comb. Theory Ser. B 18 (1975), 155-163. DOI 10.1016/0095-8956(75)90042-8 | MR 0360328 | Zbl 0302.05101
[17] Wilson, S. E.: The smallest nontoroidal chiral maps. J. Graph Theory 2 (1978), 315-318. DOI 10.1002/jgt.3190020405 | MR 0512802 | Zbl 0407.05027
Partner of
EuDML logo