Previous |  Up |  Next


continuous double auction; limit order market; distribution
In this paper we formulate a general model of the continuous double auction. We (recursively) describe the distribution of the model. As a useful by-product, we give a (recursive) analytic description of the distribution of the process of the best quotes (bid and ask).
[1] D. J. Daley, D. Vere-Jones: An Introduction to the Theory of Point Processes. Second edition. Springer, New York 2003. MR 0950166 | Zbl 1026.60061
[2] J. Hoffmann-Jørgenson: Probability with a View Towards to Statistics I. Chapman and Hall, New York, 1994.
[3] O. Kallenberg: Foundations of Modern Probability. Second edition. Springer, New York 2002. MR 1876169 | Zbl 0996.60001
[4] H. Luckock: A steady-state model of the continuous double auction. Quantitative Finance 3 (2003), 385-404. DOI 10.1088/1469-7688/3/5/305 | MR 2015235
[5] S. Maslov: Simple model of a limit order driven market. Physica A 278 (2000), 571-578. DOI 10.1016/S0378-4371(00)00067-4
[6] S. Mike, J. D. Farmer: An empirical behavioral model of liquidity and volatility. J. Econom. Dynamics Control 32 (2008), 200-234. DOI 10.1016/j.jedc.2007.01.025
[7] D. Pollard: A User's Guide to Measure Theoretic Probability. Cambridge Univ. Press, Cambridge 2002. MR 1873379 | Zbl 0992.60001
[8] M. Šmíd: On Approximation of Stochastic Programming Problems. PhD Thesis, Charles University, Department of Probability Statistics, 2004.
[9] M. Šmíd: Price tails in the Smith and Farmer's model. Bull. Czech Econometric Soc. 25 (2008), 31-40.
[10] M. Šmíd: Probabilistic Properties of the Continuous Double Auction. Research Report No. 2304. Institute of Information Theory and Automation, Prague 2011. MR 2932928
[11] E. Smith, J. D. Farmer, L. Gillemot, S. Krishnamurthy: Statistical theory of the continuous double auction. Quantitative Finance 3 (2003), 6, 481-514. DOI 10.1088/1469-7688/3/6/307 | MR 2026575
Partner of
EuDML logo