Previous |  Up |  Next


Title: On the $L$-valued categories of $L$-$E$-ordered sets (English)
Author: Grigorenko, Olga
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 1
Year: 2012
Pages: 144-164
Summary lang: English
Category: math
Summary: The aim of this paper is to construct an $L$-valued category whose objects are $L$-$E$-ordered sets. To reach the goal, first, we construct a category whose objects are $L$-$E$-ordered sets and morphisms are order-preserving mappings (in a fuzzy sense). For the morphisms of the category we define the degree to which each morphism is an order-preserving mapping and as a result we obtain an $L$-valued category. Further we investigate the properties of this category, namely, we observe some special objects, special morphisms and special constructions. (English)
Keyword: category
Keyword: $L$-valued category
Keyword: fuzzy order relation
MSC: 03E72
MSC: 18A05
MSC: 18B35
idZBL: Zbl 1251.03062
idMR: MR2932933
Date available: 2012-03-05T08:36:51Z
Last updated: 2013-09-22
Stable URL:
Reference: [1] J. Adamek, H. Herrlich, G. E. Strecker: Abstract and concrete categories: The joy of cats..Reprints in Theory and Applications of Categories, No. 17 2006. Zbl 1113.18001, MR 2240597
Reference: [2] R. Bělohlávek: Fuzzy Relational Systems: Foundations and Principles..Kluwer Academic/Plenum Press, New York 2002. Zbl 1067.03059
Reference: [3] U. Bodenhofer: A similarity-based generalization of fuzzy orderings preserving the classical axioms..Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 8(5) (2000), 593-610. Zbl 1113.03333, MR 1784649, 10.1142/S0218488500000411
Reference: [4] U. Bodenhofer: Representations and constructions of similarity-based fuzzy orderings..Fuzzy Sets and Systems 137 (2003), 113-136. Zbl 1052.91032, MR 1992702
Reference: [5] U. Bodenhofer, J. Küng: Fuzzy orderings in flexible query answering systems..Soft Computing 8 (2004), 7, 512-522. Zbl 1063.68047, MR 1784649, 10.1007/s00500-003-0308-9
Reference: [6] U. Bodenhofer, B. De Baets, J. Fodor: A compendium of fuzzy weak orders: representations and constructions..Fuzzy Sets and Systems 158 (2007), 593-610. Zbl 1119.06001, MR 2302639
Reference: [7] M. Demirci: A theory of vague lattices based on many-valued equivalence relations - I: General representation results..Fuzzy Sets and Systems 151 (2005), 3, 437-472. Zbl 1067.06006, MR 2126168
Reference: [8] J. Fodor, M. Roubens: Fuzzy Preference Modelling and Multicriteria Decision Support..Kluwer Academic Publishers, Dordrecht 1994. Zbl 0827.90002
Reference: [9] J. A. Goguen: L-fuzzy sets..J. Math. Anal. Appl. 18 (1967), 338-353. Zbl 0145.24404, MR 0224391
Reference: [10] O. Grigorenko: Categorical aspects of aggregation of fuzzy relations..In: Abstracts 10th Conference on Fuzzy Set Theory and Applications, 2010, p. 61.
Reference: [11] O. Grigorenko: Degree of monotonicity in aggregation process..In: Proc. 2010 IEEE International Conference on Fuzzy Systems, pp. 1080-1087.
Reference: [12] H. Herrlich, G. E. Strecker: Category Theory..Second edition. Heldermann Verlag, Berlin 1978. MR 2377903
Reference: [13] U. Höhle, N. Blanchard: Partial ordering in L-underdeterminate sets..Inform. Sci. 35 (1985), 133-144. Zbl 0576.06004, MR 0794764, 10.1016/0020-0255(85)90045-3
Reference: [14] U. Höhle: Quotients with respect to similarity relations..Fuzzy Sets and Systems 27 (1988), 31-44. Zbl 0666.18002, MR 0950448, 10.1016/0165-0114(88)90080-2
Reference: [15] U. Höhle: M-valued sets and sheaves over integral commutative cl-monoids..In: Applications of Category Theory to Fuzzy Subsets (S. E. Rodabaugh et al., eds.), Kluwer Academic Publishers, Dordrecht, Boston, London, pp. 33-72. Zbl 0766.03037, MR 1154568
Reference: [16] E. P. Klement, R. Mesiar, E. Pap: Triangular Norms..Kluwer Academic Publishers, The Netherlands 2002. Zbl 1012.03033, MR 1790096
Reference: [17] H. L. Lai, D. X. Zhang: Many-valued complete distributivity..arXiv:math.CT/0603590, 2006.
Reference: [18] F. W. Lawvere: Metric spaces, generalized logic, and closed categories..Rend. Sem. Mat. Fis. Milano 43 (1973), 135-166. Also Reprints in Theory and Applications of Categories 1 (2002). MR 0352214, 10.1007/BF02924844
Reference: [19] F. W. Lawvere: Taking categories seriously..Revisita Columbiana de Matemáticas XX (1986), 147-178. Also Reprints in Theory and Applications of Categories 8 (2005). Zbl 0648.18001, MR 0948965
Reference: [20] O. Lebedeva (Grigorenko): Fuzzy order relation and fuzzy ordered set category..In: New Dimensions in fuzzy logic and related technologies. Proc. 5th EUSFLAT Conference, Ostrava 2007, pp. 403-407
Reference: [21] S. Ovchinnikov: Similarity relations, fuzzy partitions, and fuzzy orderings..Fuzzy Sets and Systems 40 (1991), 1, 107-126. Zbl 0725.04003, MR 1103658, 10.1016/0165-0114(91)90048-U
Reference: [22] A. Sostak: Fuzzy categories versus categories of fuzzy structured sets: Elements of the theory of fuzzy categories..Mathematik-Arbeitspapiere, Universitat Bremen 48 (1997), 407-437.
Reference: [23] A. Sostak: $L$-valued categories: Generalities and examples related to algebra and topology..In: Categorical Structures and Their Applications (W. Gahler and G. Preuss, eds.), World Scientific 2004, pp. 291-312. Zbl 1068.18001, MR 2127008
Reference: [24] L. A. Zadeh: Similarity relations and fuzzy orderings..Inform. Sci. 3 (1971), 177-200. Zbl 0218.02058, MR 0297650, 10.1016/S0020-0255(71)80005-1
Reference: [25] L. A. Zadeh: Fuzzy sets..Inform. Control 8 (1965), 338-353. Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X


Files Size Format View
Kybernetika_48-2012-1_9.pdf 346.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo