Previous |  Up |  Next

Article

Title: Combinatorial differential geometry and ideal Bianchi–Ricci identities II – the torsion case (English)
Author: Janyška, Josef
Author: Markl, Martin
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 48
Issue: 1
Year: 2012
Pages: 61-80
Summary lang: English
.
Category: math
.
Summary: This paper is a continuation of [2], dealing with a general, not-necessarily torsion-free, connection. It characterizes all possible systems of generators for vector-field valued operators that depend naturally on a set of vector fields and a linear connection, describes the size of the space of such operators and proves the existence of an ‘ideal’ basis consisting of operators with given leading terms which satisfy the (generalized) Bianchi–Ricci identities without corrections. (English)
Keyword: natural operator
Keyword: linear connection
Keyword: torsion
Keyword: reduction theorem
Keyword: graph
MSC: 20G05
MSC: 53C05
MSC: 58A32
idMR: MR2915850
DOI: 10.5817/AM2012-1-61
.
Date available: 2012-03-15T18:12:24Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/142092
.
Reference: [1] Janyška, J.: Reduction theorems for general linear connections.Differential Geom. Appl. 20 (2004), 177. Zbl 1108.53016, MR 2038554, 10.1016/j.difgeo.2003.10.006
Reference: [2] Janyška, J., Markl, M.: Combinatorial differential geometry and ideal Bianchi–Ricci identities.Adv. Geom. 11 (3) (2011), 509–540. Zbl 1220.53019, MR 2817591, 10.1515/advgeom.2011.017
Reference: [3] Kolář, I., Michor, P. W., Slovák, J.: Natural operations in differential geometry.Springer–Verlag, Berlin, 1993. Zbl 0782.53013, MR 1202431
Reference: [4] Krupka, D., Janyška, J.: Lectures on differential invariants.Folia Fac. Sci. Nat. Univ. Purkynianae Brun. Math., 1990. Zbl 0752.53004, MR 1108622
Reference: [5] Łubczonok, G.: On reduction theorems.Ann. Polon. Math. 26 (1972), 125–133. MR 0307078
Reference: [6] Mac Lane, S.: Homology.Springer–Verlag, 1963.
Reference: [7] Markl, M.: Homotopy algebras are homotopy algebras.Forum Math. 16 (2004), 129–160. Zbl 1067.55011, MR 2034546, 10.1515/form.2004.002
Reference: [8] Markl, M.: ${GL_n}$–invariant tensors and graphs.Arch. Math. (Brno) 44 (2008), 339–353. Zbl 1212.15051, MR 2501578
Reference: [9] Markl, M.: Natural differential operators and graph complexes.Differential Geom. Appl. 27 (2009), 257–278. Zbl 1165.51005, MR 2503978, 10.1016/j.difgeo.2008.10.008
Reference: [10] Markl, M., Shnider, S., Stasheff, J. D.: Operads in Algebra, Topology and Physics.Mathematical Surveys and Monographs, vol. 96, Amer. Math. Soc., 2002. Zbl 1017.18001, MR 1898414
Reference: [11] Markl, M., Voronov, A. A.: PROPped up graph cohomology.Algebra, arithmetic, and geometry: In honor of Yu. I. Manin, vol. II, Birkhäuser Boston, Inc., Boston, MA, progr. math., 270 ed., 2009, pp. 249–281. Zbl 1208.18008, MR 2641192
Reference: [12] Nijenhuis, A.: Theory of the geometric object.Thesis, University of Amsterdam (1952). Zbl 0049.22903, MR 0050364
Reference: [13] Nijenhuis, A.: Natural bundles and their general properties. Geometric objects revisited.Differential geometry (in honor of Kentaro Yano), Kinokuniya, Tokyo, 1972, pp. 317–334. Zbl 0246.53018, MR 0380862
Reference: [14] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry.Interscience Publishers, 1963. MR 0152974
Reference: [15] Schouten, J. A.: Ricci calculus.Berlin–Göttingen, 1954. Zbl 0057.37803
Reference: [16] Terng, C. L.: Natural vector bundles and natural differential operators.Amer. J. Math. 100 (1978), 775–828. Zbl 0422.58001, MR 0509074, 10.2307/2373910
Reference: [17] Veblen, O.: Invariants of quadratic differential forms.Cambridge Tracts in Mathematics and Mathematical Physics, no. 24, 1927.
.

Files

Files Size Format View
ArchMathRetro_048-2012-1_6.pdf 580.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo