[2] K. Cechlárová: 
Efficient computation of the greatest eigenvector in fuzzy algebra. Tatra Mt. Math. Publ. 12 (1997), 73-79. 
MR 1607194 | 
Zbl 0963.65041 
[3] G. Cohen, D. Dubois, J. P. Quadrat, M. Viot: 
A linerar-system-theoretic view of discrete event processes and its use for performance evaluation in manufacturing. IEE Trans. Automat. Control AC-30 (1985), 210-220. 
DOI 10.1109/TAC.1985.1103925 | 
MR 0778424 
[4] R. A. Cuninghame-Green: 
Describing industrial processes with interference and approximating their steady-state behavior. Oper. Res. Quart. 13 (1962), 95-100. 
DOI 10.1057/jors.1962.10 
[5] R. A. Cuninghame-Green: 
Minimax Algebra. Lect. Notes in Econom. and Math. Systems 166, Springer-Verlag, Berlin 1979. 
MR 0580321 | 
Zbl 0739.90073 
[6] R. A. Cuninghame-Green: Minimax Algebra and Application. In: Advances in Imaging and Electron Physics 90, (P. W. Hawkes, ed.), Academic Press, New York 1995.
[8] M. Gavalec, I. Rashid: Monotone eigenspace structure of a max-drast fuzzy matrix. In: Proc. 28th Internat. Conf. Mathematical Methods in Economics, University of South Bohemia, České Budějovice 2010, pp. 162-167.
[9] M. Gavalec, I. Rashid, S. Sergeev: Monotone eigenspace structure of a max-prod fuzzy matrix. In preparation.
[10] M. Gondran: 
Valeurs propres et vecteurs propres en classification hiérarchique. RAIRO Informatique Théorique 10 (1976), 39-46. 
MR 0411059 
[11] M. Gondran, M. Minoux: 
Eigenvalues and eigenvectors in semimodules and their interpretation in graph theory. In: Proc. 9th Prog. Symp. 1976, pp. 133-148. 
Zbl 0453.05028 
[12] M. Gondran, M. Minoux: Valeurs propres et vecteurs propres en théorie des graphes. Colloq. Internat. CNRS (1978), 181-183.
[13] G. Olsder: 
Eigenvalues of dynamic max-min systems. In: Discrete Events Dynamic Systems 1, Kluwer Academic Publishers 1991, pp. 177-201. 
Zbl 0747.93014 
[17] U. Zimmermann: 
Linear and Combinatorial Optimization in Ordered Algebraic Structure. Ann. Discrete Math. 10, North Holland, Amsterdam 1981. 
MR 0609751