Previous |  Up |  Next

Article

Keywords:
Łukasiewicz triangular norm; max-t fuzzy algebra; eigenproblem; monotone eigenvector
Summary:
Eigenvectors of a fuzzy matrix correspond to stable states of a complex discrete-events system, characterized by a given transition matrix and fuzzy state vectors. Description of the eigenspace (set of all eigenvectors) for matrices in max-min or max-drast fuzzy algebra was presented in previous papers. In this paper the eigenspace of a three-dimensional fuzzy matrix in max-Łukasiewicz algebra is investigated. Necessary and sufficient conditions are shown under which the eigenspace restricted to increasing eigenvectors of a given matrix is non-empty, and the structure of the increasing eigenspace is described. Complete characterization of the general eigenspace structure for arbitrary three-dimensional fuzzy matrix, using simultaneous row and column permutations of the matrix, is presented in Sections 4 and 5, with numerical examples in Section 6.
References:
[1] K. Cechlárová: Eigenvectors in bottleneck algebra. Lin. Algebra Appl. 175 (1992), 63-73. DOI 10.1016/0024-3795(92)90302-Q | MR 1179341 | Zbl 0756.15014
[2] K. Cechlárová: Efficient computation of the greatest eigenvector in fuzzy algebra. Tatra Mt. Math. Publ. 12 (1997), 73-79. MR 1607194 | Zbl 0963.65041
[3] G. Cohen, D. Dubois, J. P. Quadrat, M. Viot: A linerar-system-theoretic view of discrete event processes and its use for performance evaluation in manufacturing. IEE Trans. Automat. Control AC-30 (1985), 210-220. DOI 10.1109/TAC.1985.1103925 | MR 0778424
[4] R. A. Cuninghame-Green: Describing industrial processes with interference and approximating their steady-state behavior. Oper. Res. Quart. 13 (1962), 95-100. DOI 10.1057/jors.1962.10
[5] R. A. Cuninghame-Green: Minimax Algebra. Lect. Notes in Econom. and Math. Systems 166, Springer-Verlag, Berlin 1979. MR 0580321 | Zbl 0739.90073
[6] R. A. Cuninghame-Green: Minimax Algebra and Application. In: Advances in Imaging and Electron Physics 90, (P. W. Hawkes, ed.), Academic Press, New York 1995.
[7] M. Gavalec: Monotone eigenspace structure in max-min algebra. Lin. Algebra Appl. 345 (2002), 149-167. DOI 10.1016/S0024-3795(01)00488-8 | MR 1883271 | Zbl 0994.15010
[8] M. Gavalec, I. Rashid: Monotone eigenspace structure of a max-drast fuzzy matrix. In: Proc. 28th Internat. Conf. Mathematical Methods in Economics, University of South Bohemia, České Budějovice 2010, pp. 162-167.
[9] M. Gavalec, I. Rashid, S. Sergeev: Monotone eigenspace structure of a max-prod fuzzy matrix. In preparation.
[10] M. Gondran: Valeurs propres et vecteurs propres en classification hiérarchique. RAIRO Informatique Théorique 10 (1976), 39-46. MR 0411059
[11] M. Gondran, M. Minoux: Eigenvalues and eigenvectors in semimodules and their interpretation in graph theory. In: Proc. 9th Prog. Symp. 1976, pp. 133-148. Zbl 0453.05028
[12] M. Gondran, M. Minoux: Valeurs propres et vecteurs propres en théorie des graphes. Colloq. Internat. CNRS (1978), 181-183.
[13] G. Olsder: Eigenvalues of dynamic max-min systems. In: Discrete Events Dynamic Systems 1, Kluwer Academic Publishers 1991, pp. 177-201. Zbl 0747.93014
[14] E. Sanchez: Resolution of eigen fuzzy sets equations. Fuzzy Sets and Systems 1 (1978), 69-74. DOI 10.1016/0165-0114(78)90033-7 | MR 0494745 | Zbl 0366.04001
[15] Yi-Jia Tan: Eigenvalues and eigenvectors for matrices over distributive lattices. Lin. Algebra Appl. 283 (1998), 257-272. DOI 10.1016/S0024-3795(98)10105-2 | MR 1657171
[16] Yi-Jia Tan: On the powers of matrices over a distributive lattice. Lin. Algebra Appl. 336 (2001), 1-14. DOI 10.1016/S0024-3795(00)00168-3 | MR 1855387
[17] U. Zimmermann: Linear and Combinatorial Optimization in Ordered Algebraic Structure. Ann. Discrete Math. 10, North Holland, Amsterdam 1981. MR 0609751
Partner of
EuDML logo