Article
Keywords:
differential inclusion; global solution; a priori bound
Summary:
The paper presents an existence result for global solutions to the finite dimensional differential inclusion $y' \in F( y) ,$ $F$ being defined on a closed set $K.$ A priori bounds for such solutions are provided.
References:
                        
[3] Cârjă, O., Motreanu, D.: 
Characterization of Lyapunov pairs in the nonlinear case and applications. Nonlinear Anal., Theory Methods Appl. 70 (2009), 352-363. 
MR 2468242 | 
Zbl 1172.34039[4] Cârjă, O., Necula, M., Vrabie, I. I.: 
Viability, Invariance and Applications. North-Holland Mathematics Studies 207, Elsevier, Amsterdam (2007). 
MR 2488820 | 
Zbl 1239.34068[5] Clarke, F. H., Ledyaev, Yu. S., Stern, R. J., Wolenski, P. R.: 
Nonsmooth Analysis and Control Theory. Graduate Texts in Mathematics 178, Springer, New York (1998). 
MR 1488695 | 
Zbl 1047.49500[6] Fattorini, H. O.: 
Infinite Dimensional Optimization and Control Theory. Encyclopedia of Mathematics and Its Applications 62, Cambridge University Press, Cambridge (1999). 
MR 1669395 | 
Zbl 0931.49001