Article
Keywords:
Yang-Mills equations; self-dual equations; anti-self-dual equations; instanton; anti-instanton; difference equations
Summary:
We study a discrete model of the $SU(2)$ Yang-Mills equations on a combinatorial analog of $\mathbb {R}^4$. Self-dual and anti-self-dual solutions of discrete Yang-Mills equations are constructed. To obtain these solutions we use both the techniques of a double complex and the quaternionic approach.
References:
                        
[1] Atiyah, M. F.: 
Geometry of Yang-Mills Fields. Lezione Fermiane, Scuola Normale Superiore, Pisa (1979). 
MR 0554924 | 
Zbl 0435.58001[2] Dezin, A. A.: 
Multidimensional Analysis and Discrete Models. CRC Press, Boca Raton (1995). 
MR 1397027 | 
Zbl 0851.39008[3] Dezin, A. A.: 
Models generated by the Yang-Mills equations. Differ. Uravn. 29 (1993), 846-851; English translation in Differ. Equ. 29 (1993), 724-728. 
MR 1250743[5] Nash, C., Sen, S.: 
Topology and Geometry for Physicists. Acad. Press, London (1989). 
MR 0776042[6] Sushch, V.: 
Gauge-invariant discrete models of Yang-Mills equations. Mat. Zametki. 61 (1997), 742-754; English translation in Math. Notes. 61 (1997), 621-631. 
MR 1620141 | 
Zbl 0935.53017[7] Sushch, V.: 
Discrete model of Yang-Mills equations in Minkowski space. Cubo A Math. Journal. 6 (2004), 35-50. 
MR 2092042 | 
Zbl 1081.81082[8] Sushch, V.: 
A gauge-invariant discrete analog of the Yang-Mills equations on a double complex. Cubo A Math. Journal. 8 (2006), 61-78. 
MR 2287294 | 
Zbl 1139.81375