Previous |  Up |  Next

Article

Keywords:
pseudoautomorphism; Bruck loop; weak commutative inverse property
Summary:
We show that in a weak commutative inverse property loop, such as a Bruck loop, if $\alpha$ is a right [left] pseudoautomorphism with companion $c$, then $c$ [$c^2$] must lie in the left nucleus. In particular, for any such loop with trivial left nucleus, every right pseudoautomorphism is an automorphism and if the squaring map is a permutation, then every left pseudoautomorphism is an automorphism as well. We also show that every pseudoautomorphism of a commutative inverse property loop is an automorphism, generalizing a well-known result of Bruck.
References:
[1] Aschbacher M.: Bol loops of exponent $2$. J. Algebra 288 (2005), 99–136. DOI 10.1016/j.jalgebra.2005.03.005 | MR 2138373 | Zbl 1090.20037
[2] Aschbacher M., Kinyon M.K., Phillips J.D.: Finite Bruck loops. Trans. Amer. Math. Soc. 358 (2006), 3061–3075. DOI 10.1090/S0002-9947-05-03778-5 | MR 2216258 | Zbl 1102.20046
[3] Baumeister B., Stein A.: Self-invariant $1$-factorizations of complete graphs and finite Bol loops of exponent $2$. Beiträge Algebra Geom. 51 (2010), 117–135. MR 2650481 | Zbl 1208.20064
[4] Baumeister B., Stroth G., Stein A.: On Bruck loops of $2$-power exponent. J. Algebra 327 (2011), 316–336. DOI 10.1016/j.jalgebra.2010.10.033 | MR 2746041 | Zbl 1233.20059
[5] Baumeister B., Stein A.: The finite Bruck loops. J. Algebra 330 (2011), 206–220. DOI 10.1016/j.jalgebra.2010.11.017 | MR 2774625 | Zbl 1235.20059
[6] Bruck R.H.: Pseudo-automorphisms and Moufang loops. Proc. Amer. Math. Soc. 3 (1952), 66–72. DOI 10.1090/S0002-9939-1952-0047635-6 | MR 0047635 | Zbl 0046.01803
[7] Bruck R.H.: A Survey of Binary Systems. Springer, Berlin, 1971. MR 0093552 | Zbl 0141.01401
[8] Glauberman G.: On loops of odd order I. J. Algebra 1 (1964), 374–396. DOI 10.1016/0021-8693(64)90017-1 | MR 0175991
[9] Johnson K.W., Sharma B.L.: A variety of loops. Ann. Soc. Sci. Bruxelles Sér. I 92 (1978), 25–41. MR 0498926 | Zbl 0381.20056
[10] Kiechle H.: Theory of K-loops. Lecture Notes in Mathematics, 1778, Springer, Berlin, 2002. DOI 10.1007/b83276 | MR 1899153 | Zbl 0997.20059
[11] McCune W.W.: Prover9, version 2009-11A. http://www.cs.unm.edu/$\sim$mccune/prover9/
[12] Nagy G.P.: A class of finite simple Bol loops of exponent $2$. Trans. Amer. Math. Soc. 361 (2009), 5331–5343. DOI 10.1090/S0002-9947-09-04646-7 | MR 2515813
[13] Pflugfelder H.O.: Quasigroups and Loops: Introduction. Sigma Series in Pure Math., 7, Heldermann, Berlin, 1990. MR 1125767 | Zbl 0715.20043
[14] Ungar A.A.: Beyond the Einstein addition law and its gyroscopic Thomas precession: The theory of gyrogroups and gyrovector spaces. Fundamental Theories of Physics, 117, Kluwer, Dordrecht, 2001. MR 1978122 | Zbl 0972.83002
Partner of
EuDML logo