Article
Keywords:
loop; associator; commutator; nilpotent; quasivarieties; quasiidentities; identities
Summary:
In this part the smallest non-abelian quasivarieties for nilpotent Moufang loops are described.
References:
                        
[1] Mal'cev A.I.: 
On the inclusion of associative systems in groups, I. Mat. Sbornik 6 (1939), no. 2, 331–336. 
MR 0002152[2] Mal'cev A.I.: 
On the inclusion of associative systems in groups, II. Mat. Sbornik 8 (1940), no. 2, 251–263. 
MR 0003420[3] Mal'cev A.I.: 
Quasiprimitive classes of abstract algebras. Dokl. Akad. Nauk SSSR (N.S.) 108 (1956), 187–189. 
MR 0079572[4] Mal'cev A.I.: 
Several remarks on quasivarieties of algebraic systems. Algebra i Logika Sem. 5 (1966), no. 3, 3–9. 
MR 0205902[5] Mal'cev A. I.: 
Some borderline problems of algebra and logic. 1968 Proc. Internat. Congr. Math. (Moscow, 1966), pp. 217–231. 
MR 0233751[7] Ursu V.I.: 
On identities of nilpotent Moufang loops. Rev. Roumaine Math. Pures Appl. 45 (2000), no. 3, 537–548. 
MR 1840173 | 
Zbl 0993.20043[9] Koval'ski A.V., Ursu V.I.: 
An equational theory for a nilpotent A-loop. Algebra Logika 49 (2010), no. 4, 479–497. 
MR 2790173