| Title: | Decomposition of $\ell $-group-valued measures (English) | 
| Author: | Barbieri, Giuseppina | 
| Author: | Valente, Antonietta | 
| Author: | Weber, Hans | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 62 | 
| Issue: | 4 | 
| Year: | 2012 | 
| Pages: | 1085-1100 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | We deal with decomposition theorems for modular measures $\mu \colon L\rightarrow G$ defined on a D-lattice with values in a Dedekind complete $\ell $-group. Using the celebrated band decomposition theorem of Riesz in Dedekind complete $\ell $-groups, several decomposition theorems including the Lebesgue decomposition theorem, the Hewitt-Yosida decomposition theorem and the Alexandroff decomposition theorem are derived. Our main result—also based on the band decomposition theorem of Riesz—is the Hammer-Sobczyk decomposition for $\ell $-group-valued modular measures on D-lattices. Recall that D-lattices (or equivalently lattice ordered effect algebras) are a common generalization of orthomodular lattices and of MV-algebras, and therefore of Boolean algebras. If $L$ is an MV-algebra, in particular if $L$ is a Boolean algebra, then the modular measures on $L$ are exactly the finitely additive measures in the usual sense, and thus our results contain results for finitely additive $G$-valued measures defined on Boolean algebras. (English) | 
| Keyword: | D-lattice | 
| Keyword: | measure | 
| Keyword: | lattice ordered group | 
| Keyword: | decomposition | 
| Keyword: | Hammer-Sobczyk decomposition | 
| MSC: | 06C15 | 
| MSC: | 06F15 | 
| MSC: | 28B10 | 
| MSC: | 28B15 | 
| idZBL: | Zbl 1274.28025 | 
| idMR: | MR3010258 | 
| DOI: | 10.1007/s10587-012-0065-y | 
| . | 
| Date available: | 2012-11-10T21:46:39Z | 
| Last updated: | 2020-07-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/143046 | 
| . | 
| Reference: | [1] Avallone, A., Vitolo, P.: Congruences and ideals of effect algebras.Order 20 (2003), 67-77. Zbl 1030.03047, MR 1993411, 10.1023/A:1024458125510 | 
| Reference: | [2] Avallone, A., Barbieri, G., Vitolo, P.: On the Alexandroff decomposition theorem.Math. Slovaca 58 (2008), 185-200. Zbl 1174.28010, MR 2391213, 10.2478/s12175-008-0067-2 | 
| Reference: | [3] Avallone, A., Barbieri, G., Vitolo, P., Weber, H.: Decomposition of effect algebras and the Hammer-Sobczyk theorem.Algebra Univers. 60 (2009), 1-18. Zbl 1171.28004, MR 2480629 | 
| Reference: | [4] Birkhoff, G.: Lattice Theory.American Mathematical Society New York (1940). Zbl 0063.00402, MR 0001959 | 
| Reference: | [5] Rao, K. P. S. Bhaskara, Rao, M. Bhaskara: Theory of Charges. A Study of Finitely Additive Measures.Pure and Applied Mathematics, 109 Academic Press, a Subsidiary of Harcourt Brace Jovanovich, Publishers (1983). MR 0751777 | 
| Reference: | [6] Boccuto, A., Candeloro, D.: Sobczyk-Hammer decompositions and convergence theorems for measures with values in $\ell$-groups.Real Anal. Exch. 33 (2008), 91-106. MR 2402865, 10.14321/realanalexch.33.1.0091 | 
| Reference: | [7] Iglesias, M. Congost: Measures and probabilities in ordered structures.Stochastica 5 (1981), 45-68. MR 0625841 | 
| Reference: | [8] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures.Dordrecht: Kluwer Academic Publishers Bratislava: Ister Science (2000). MR 1861369 | 
| Reference: | [9] Fleischer, I., Traynor, T.: Group-valued modular functions.Algebra Univers. 14 (1982), 287-291. Zbl 0458.06004, MR 0654397, 10.1007/BF02483932 | 
| Reference: | [10] Glass, A. M. W., Holland, W. C.: Lattice-ordered Groups.Advances and Techniques Kluwer Academic Publishers (1989). Zbl 0705.06001, MR 1036072 | 
| Reference: | [11] Hammer, P. C., Sobczyk, A.: The ranges of additive set functions.Duke Math. J. 11 (1944), 847-851. Zbl 0061.09803, MR 0011165, 10.1215/S0012-7094-44-01173-7 | 
| Reference: | [12] Riesz, F.: Sur quelques notions fondamentales dans la théorie générale des opérations linéaires.Ann. Math. 41 (1940), 174-206 French. Zbl 0022.31802, MR 0000902, 10.2307/1968825 | 
| Reference: | [13] Schmidt, K. D.: Jordan Decompositions of Generalized Vector Measures.Pitman Research Notes in Mathematics Series, 214 Harlow: Longman Scientific & Technical; New York etc.: John Wiley & Sons, Inc. (1989). Zbl 0692.28004, MR 1028550 | 
| Reference: | [14] Schmidt, K. D.: Decomposition and extension of abstract measures in Riesz spaces.Rend. Ist. Mat. Univ. Trieste 29 (1998), 135-213. Zbl 0929.28009, MR 1696025 | 
| . |