| Title: | Riemannian symmetries in flag manifolds (English) | 
| Author: | Piu, Paola | 
| Author: | Remm, Elisabeth | 
| Language: | English | 
| Journal: | Archivum Mathematicum | 
| ISSN: | 0044-8753 (print) | 
| ISSN: | 1212-5059 (online) | 
| Volume: | 48 | 
| Issue: | 5 | 
| Year: | 2012 | 
| Pages: | 387-398 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | Flag manifolds are in general not symmetric spaces. But they are provided with a structure of $\mathbb{Z}_2^k$-symmetric space. We describe the Riemannian metrics adapted to this structure and some properties of reducibility. The conditions for a metric adapted to the $\mathbb{Z}_2^2$-symmetric structure to be naturally reductive are detailed for the flag manifold $SO(5)/SO(2)\times SO(2) \times SO(1)$. (English) | 
| Keyword: | $\mathbb{Z}_2^k$-symmetric space | 
| Keyword: | flag manifolds | 
| Keyword: | Riemannian metrics | 
| MSC: | 53C30 | 
| idMR: | MR3007620 | 
| DOI: | 10.5817/AM2012-5-387 | 
| . | 
| Date available: | 2012-12-17T14:03:37Z | 
| Last updated: | 2013-09-19 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/143113 | 
| . | 
| Reference: | [1] Arias–Marco, T., Kowalski, O.: Classification of 4–dimensional homogeneous D’Atri spaces.Czechoslovak Math. J. 58 (1) (2008), 203–239. Zbl 1174.53024, MR 2402535, 10.1007/s10587-008-0014-y | 
| Reference: | [2] Bahturin, Y., Goze, M.: $\mathbb{Z}_2^2$–symmetric spaces.Pacific J. Math. 236 (1) (2008), 1–21. MR 2398984, 10.2140/pjm.2008.236.1 | 
| Reference: | [3] Bouyakoub, A., Goze, M., Remm, E.: On Riemannian non symmetric spaces and flag manifolds.arXiv:math/0609790. MR 2114414 | 
| Reference: | [4] Goze, M., Remm, E.: $\Gamma $–symmetric spaces.Differential geometry, World Sci. Publ., Hackensack, NJ, 2009, pp. 195–206. Zbl 1178.53047, MR 2523505 | 
| Reference: | [5] Kobayashi, S., Nomizu, K.: Foundations of differential geometry, Vollume II.llume II, Interscience Tracts in Pure and Applied Mathematics, No. 15, Interscience Publishers John Wiley and Sons, Inc., New York–London–Sydney, 1969. MR 0238225 | 
| Reference: | [6] Kobayashi, S., Nomizu, K.: Foundations of differential geometry, volume I.lume I, Interscience Publishers, John Wiley and Sons, New York–London, 1963. MR 0152974 | 
| Reference: | [7] Kollross, A.: Exceptional $Z_2\times Z_2$–symmetric spaces.Pacific J. Math. 242 (1) (2009), 113–130. MR 2525505, 10.2140/pjm.2009.242.113 | 
| Reference: | [8] Kowalski, O.: Generalized symmetric spaces, volume II.lume II, Lecture Notes in Math. 805, Springer–Verlag, Berlin–New York, 1980. MR 0579184 | 
| Reference: | [9] Lutz, R.: Sur la géométrie des espaces $\Gamma $–symétriques.C. R. Acad. Sci. Paris Sér. I Math. 293 (1) (1981), 55–58. Zbl 0474.53047, MR 0633562 | 
| . |