[1] Balcar B., Pelant J., Simon P.: 
The space of ultrafilters on $\mathbb{N}$ covered by nowhere dense sets. Fund. Math. 110 (1980), 11–24. 
MR 0600576[2] Balcerzak M., Dems K., Komisarski A.: 
Statistical convergence and ideal convergence for sequence of functions. J. Math. Anal. Appl. 328 (2007), no. 1, 715–729. 
DOI 10.1016/j.jmaa.2006.05.040 | 
MR 2285579[3] Bukovská Z.: 
Thin sets in trigonometrical series and quasinormal convergence. Math. Slovaca 40 (1990), 53–62. 
MR 1094972 | 
Zbl 0733.43003[8] Császár Á., Laczkovich M.: 
Discrete and equal convergence. Studia Sci. Math. Hungar. 10 (1975), 463–472. 
MR 0515347 | 
Zbl 0405.26006[10] Chandra D., Das P.: 
Some further investigations of open covers and selection principles using ideals. Topology Proc. 39 (2012), 281–291. 
MR 2869444[15] Das P., Dutta S.: On some types of convergence of sequences of functions in ideal context. Filomat 27 (2013), no. 1, 147–154.
[16] Das P.: Certain types of covers and selection principles using ideals. Houston J. Math. 39 (2013), no. 2, 447–460.
[17] Denjoy A.: Leçons sur le calcul des coefficients d'une série trigonométrique, $2^e$ partie. Paris, 1941.
[23] Kostyrko P., Šalát T., Wilczyński W.: 
$\mathcal{I}$-convergence. Real Anal. Exchange 26 (2000/2001), no. 2, 669–685. 
MR 1844385[24] Komisarski A.: 
Pointwise $\mathcal{I}$-convergence and $\mathcal{I}$-convergence in measure of sequences of functions. J. Math. Anal. Appl. 340 (2008), 770–779. 
DOI 10.1016/j.jmaa.2007.09.016 | 
MR 2390885[25] Lahiri B.K., Das P.: 
$\mathcal{I}$ and $\mathcal{I}^*$-convergence in topological spaces. Math. Bohemica 130 (2005), 153–160. 
MR 2148648[26] Lahiri B.K., Das P.: 
$\mathcal{I}$ and $\mathcal{I}^*$-convergence of nets. Real Anal. Exchange 33 (2008), no. 2, 431–442. 
MR 2458259[28] Papanastassiou N.: 
On a new type of convergence of sequences of functions. Atti Sem. Mat. Fis. Univ. Modena 50 (2002), no. 2, 493–506. 
MR 1958294 | 
Zbl 1221.28012[29] Šalát T.: 
On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), 139–150. 
MR 0587239 | 
Zbl 0437.40003[31] Van Douven E.K.: 
The integers and topology. Handbook of Set-theoritic Topology, K. Kunen and J.E. Vaughan (eds.), North-Holland, Amsterdam, 1984. 
MR 0776622