Previous |  Up |  Next

Article

Keywords:
Higson corona; character of a point; ultrafilter number; dominating number
Summary:
We prove that for an unbounded metric space $X$, the minimal character $\mathsf m\chi(\check X)$ of a point of the Higson corona $\check X$ of $X$ is equal to $\mathfrak u$ if $X$ has asymptotically isolated balls and to $\max\{\mathfrak u,\mathfrak d\}$ otherwise. This implies that under $\mathfrak u < \mathfrak d$ a metric space $X$ of bounded geometry is coarsely equivalent to the Cantor macro-cube $2^{<\mathbb N}$ if and only if $\dim (\check X)=0$ and $\mathsf m\chi (\check X)= \mathfrak d$. This contrasts with a result of Protasov saying that under CH the coronas of any two asymptotically zero-dimensional unbounded metric separable spaces are homeomorphic.
References:
[1] Banakh T., Zarichnyi I.: Characterizing the Cantor bi-cube in asymptotic categories. Groups Geom. Dyn. 5 (2011), no. 4, 691–728. DOI 10.4171/GGD/145 | MR 2836457 | Zbl 1246.54023
[2] Banakh T., Zarichnyi I.: A coarse characterization of the Baire macro-space. Proc. of Intern. Geometry Center 3 (2010), no. 4, 6–14 (available at http://arxiv.org/abs/1103.5118)
[3] Banakh T., Zdomskyy L.: The coherence of semifilters: a survey. Selection principles and covering properties in topology. 53–105, Quad. Mat., 18, Dept. Math., Seconda Univ. Napoli, Caserta, 2006. MR 2395751
[4] Banakh T., Zdomskyy L.: Coherence of Semifilters. book in progress, http://www.franko.lviv.ua/faculty/mechmat/Departments/Topology/booksite.html Zbl 1162.03026
[5] Bell G., Dranishnikov A.: Asymptotic dimension. Topology Appl. 155 (2008), no. 12, 1265–1296. MR 2423966
[6] Blass A.: Near coherence of filters, I. Cofinal equivalence of models of arithmetic. Notre Dame J. Formal Logic 27 (1986), 579–591. DOI 10.1305/ndjfl/1093636772 | MR 0867002 | Zbl 0622.03040
[7] Blass A.: Combinatorial cardinal characteristics of the continuum. in: Handbook of Set Theory, Chapter 6, pp. 395–489, Springer, Dordrecht, 2010. DOI 10.1007/978-1-4020-5764-9_7 | MR 2768685
[8] Canjar M.: Cofinalities of countable ultraproducts: the existence theorem. Notre Dame J. Formal Logic 30 (1989), no. 4, 539–542. DOI 10.1305/ndjfl/1093635237 | MR 1036675 | Zbl 0694.03029
[9] van Douwen E.: The integers and topology. in: Handbook of Set-theoretic Topology, 111–167, North-Holland, Amsterdam, 1984. MR 0776622 | Zbl 0561.54004
[10] Dranishnikov A.: Asymptotic topology. Uspekhi Mat. Nauk 55 (2000), no. 6, 71–116. MR 1840358 | Zbl 1028.54032
[11] Dranishnikov A.N., Keesling J., Uspenskij V.V.: On the Higson corona of uniformly contractible spaces. Topology 37 (1998), no. 4, 791–803. DOI 10.1016/S0040-9383(97)00048-7 | MR 1607744 | Zbl 0910.54026
[12] Dranishnikov A., Zarichnyi M.: Universal spaces for asymptotic dimension. Topology Appl. 140 (2004), no. 2–3, 203–225. MR 2074917 | Zbl 1063.54027
[13] Fremlin D.: Consequences of Martin's Axiom. Cambridge Tracts in Mathematics, 84, Cambridge University Press, London, 1984. Zbl 1156.03050
[14] Kechris A.: Classical Descriptive Set Theory. Springer, New York, 1995. MR 1321597 | Zbl 0819.04002
[15] Laflamme C., Zhu J.-P.: The Rudin-Blass ordering of ultrafilters. J. Symbolic Logic 63 (1998), 584–592. DOI 10.2307/2586852 | MR 1627310 | Zbl 0911.04001
[16] Protasov I.V.: Normal ball structures. Mat. Stud. 20 (2003), 3–16. MR 2019592 | Zbl 1053.54503
[17] Protasov I.V.: Coronas of balleans. Topology Appl. 149 (2005), no. 1–3, 149–160. DOI 10.1016/j.topol.2004.09.005 | MR 2130861 | Zbl 1068.54036
[18] Protasov I.V.: Coronas of ultrametric spaces. Comment. Math. Univ. Carolin. 52 (2011), 303–307. MR 2849052 | Zbl 1240.54087
[19] Roe J.: Lectures on Coarse Geometry. American Mathematical Society, Providence, RI, 2003. MR 2007488 | Zbl 1042.53027
[20] Vaughan J.: Small uncountable cardinals and topology. in: Open Problems in Topology, 195–218, North-Holland, Amsterdam, 1990. MR 1078647
Partner of
EuDML logo