| Title:
|
An intersection theorem for set-valued mappings (English) |
| Author:
|
Agarwal, Ravi P. |
| Author:
|
Balaj, Mircea |
| Author:
|
O'Regan, Donal |
| Language:
|
English |
| Journal:
|
Applications of Mathematics |
| ISSN:
|
0862-7940 (print) |
| ISSN:
|
1572-9109 (online) |
| Volume:
|
58 |
| Issue:
|
3 |
| Year:
|
2013 |
| Pages:
|
269-278 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
Given a nonempty convex set $X$ in a locally convex Hausdorff topological vector space, a nonempty set $Y$ and two set-valued mappings $T\colon X\rightrightarrows X$, $S\colon Y\rightrightarrows X$ we prove that under suitable conditions one can find an $x\in X$ which is simultaneously a fixed point for $T$ and a common point for the family of values of $S$. Applying our intersection theorem we establish a common fixed point theorem, a saddle point theorem, as well as existence results for the solutions of some equilibrium and complementarity problems. (English) |
| Keyword:
|
intersection theorem |
| Keyword:
|
fixed point |
| Keyword:
|
saddle point |
| Keyword:
|
equilibrium problem |
| Keyword:
|
complementarity problem |
| MSC:
|
47H04 |
| MSC:
|
47H10 |
| MSC:
|
49J53 |
| idZBL:
|
Zbl 1275.47105 |
| idMR:
|
MR3066821 |
| DOI:
|
10.1007/s10492-013-0013-7 |
| . |
| Date available:
|
2013-05-17T10:42:10Z |
| Last updated:
|
2023-08-30 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143278 |
| . |
| Reference:
|
[1] Agarwal, R. P., Balaj, M., O'Regan, D.: Common fixed point theorems and minimax inequalities in locally convex Hausdorff topological vector spaces.Appl. Anal. 88 (2009), 1691-1699. Zbl 1223.47057, MR 2588412, 10.1080/00036810903331874 |
| Reference:
|
[2] Aliprantis, C. D., Border, K. C.: Infinite Dimensional Analysis. A Hitchhiker's Guide. 3rd ed.Springer Berlin (2006). Zbl 1156.46001, MR 2378491 |
| Reference:
|
[3] Ansari, Q. H., Farajzadeh, A. P., Schaible, S.: Existence of solutions of vector variational inequalities and vector complementarity problems.J. Glob. Optim. 45 (2009), 297-307. Zbl 1226.49015, MR 2539162, 10.1007/s10898-008-9375-x |
| Reference:
|
[4] Ansari, Q. H., Yao, J. C.: An existence result for the generalized vector equilibrium problem.Appl. Math. Lett. 12 (1999), 53-56. Zbl 1014.49008, MR 1751352, 10.1016/S0893-9659(99)00121-4 |
| Reference:
|
[5] Balaj, M.: An intersection theorem with applications in minimax theory and equilibrium problem.J. Math. Anal. Appl. 336 (2007), 363-371. Zbl 1124.49019, MR 2348511, 10.1016/j.jmaa.2007.02.065 |
| Reference:
|
[6] Balaj, M.: A fixed point-equilibrium theorem with applications.Bull. Belg. Math. Soc. - Simon Stevin 17 (2010), 919-928. Zbl 1213.54061, MR 2777781, 10.36045/bbms/1292334066 |
| Reference:
|
[7] Balaj, M., O'Regan, D.: Inclusion and intersection theorems with applications in equilibrium theory in $G$-convex spaces.J. Korean Math. Soc. 47 (2010), 1017-1029. Zbl 1203.47092, MR 2723006, 10.4134/JKMS.2010.47.5.1017 |
| Reference:
|
[8] Fan, K.: A generalization of Tychonoff's fixed point theorem.Math. Ann. 142 (1961), 305-310. Zbl 0093.36701, MR 0131268, 10.1007/BF01353421 |
| Reference:
|
[9] Farajzadeh, A. P., Noor, M. A., Zainab, S.: Mixed quasi complementarity problems in topological vector spaces.J. Glob. Optim. 45 (2009), 229-235. Zbl 1193.90204, MR 2539158, 10.1007/s10898-008-9368-9 |
| Reference:
|
[10] Himmelberg, C. J.: Fixed points of compact multifunctions.J. Math. Anal. Appl. 38 (1972), 205-207. Zbl 0225.54049, MR 0303368, 10.1016/0022-247X(72)90128-X |
| Reference:
|
[11] Jeyakumar, V., Oettli, W., Natividad, M.: A solvability theorem for a class of quasiconvex mappings with applications to optimization.J. Math. Anal. Appl. 179 (1993), 537-546. Zbl 0791.46002, MR 1249837, 10.1006/jmaa.1993.1368 |
| Reference:
|
[12] Khan, S. A.: Generalized vector implicit quasi complementarity problems.J. Glob. Optim. 49 (2011), 695-705. Zbl 1242.90261, MR 2781983, 10.1007/s10898-010-9557-1 |
| Reference:
|
[13] Khanh, P. Q., Quan, N. H.: Intersection theorems, coincidence theorems and maximal-element theorems in $GFC$-spaces.Optimization 59 (2010), 115-124. Zbl 1185.49007, MR 2765472, 10.1080/02331930903500324 |
| Reference:
|
[14] Köthe, G.: Topological Vector Spaces I.Springer Berlin (1969). MR 0248498 |
| Reference:
|
[15] Lan, K. Q.: An intersection theorem for multivalued maps and applications.Comput. Math. Appl. 48 (2004), 725-729. Zbl 1060.49016, MR 2105247, 10.1016/j.camwa.2004.03.003 |
| Reference:
|
[16] Lee, B. S., Farajzadeh, A. P.: Generalized vector implicit complementarity problems with corresponding variational inequality problems.Appl. Math. Lett. 21 (2008), 1095-1100. Zbl 1211.90249, MR 2450657, 10.1016/j.aml.2007.12.008 |
| Reference:
|
[17] Lu, H., Tang, D.: An intersection theorem in L-convex spaces with applications.J. Math. Anal. Appl. 312 (2005), 343-356. Zbl 1090.47045, MR 2175223, 10.1016/j.jmaa.2005.03.085 |
| . |