Previous |  Up |  Next

Article

Title: Approximation of stochastic advection diffusion equations with stochastic alternating direction explicit methods (English)
Author: Soheili, Ali R.
Author: Arezoomandan, Mahdieh
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 58
Issue: 4
Year: 2013
Pages: 439-471
Summary lang: English
.
Category: math
.
Summary: The numerical solutions of stochastic partial differential equations of Itô type with time white noise process, using stable stochastic explicit finite difference methods are considered in the paper. Basically, Stochastic Alternating Direction Explicit (SADE) finite difference schemes for solving stochastic time dependent advection-diffusion and diffusion equations are represented and the main properties of these stochastic numerical methods, e.g. stability, consistency and convergence are analyzed. In particular, it is proved that when stable alternating direction explicit schemes for solving linear parabolic PDEs are developed to the stochastic case, they retain their unconditional stability properties applying to stochastic advection-diffusion and diffusion SPDEs. Numerically, unconditional stable SADE techniques are significant for approximating the solutions of the proposed SPDEs because they do not impose any restrictions for refining the computational domains. The performance of the proposed methods is tested for stochastic diffusion and advection-diffusion problems, and the accuracy and efficiency of the numerical methods are demonstrated. (English)
Keyword: stochastic partial differential equation
Keyword: finite difference method
Keyword: alternating direction method
Keyword: Saul'yev method
Keyword: Liu method
Keyword: convergence
Keyword: consistency
Keyword: stability
MSC: 60H15
MSC: 65M06
MSC: 65M75
idZBL: Zbl 06221240
idMR: MR3083523
DOI: 10.1007/s10492-013-0022-6
.
Date available: 2013-07-18T15:19:33Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143340
.
Reference: [1] Allen, E. J., Novosel, S. J., Zhang, Z.: Finite element and difference approximation of some linear stochastic partial differential equations.Stochastics Stochastics Rep. 64 (1998), 117-142. Zbl 0907.65147, MR 1637047, 10.1080/17442509808834159
Reference: [2] Ames, W. F.: Numerical Methods for Partial Differential Equations. 3. ed. Computer Science and Scientific Computing.Academic Press Boston (1992). MR 1184394
Reference: [3] Campbell, L. J., Yin, B.: On the stability of alternating-direction explicit methods for advection-diffusion equations.Numer. Methods Partial Differ. Equations 23 (2007), 1429-1444. Zbl 1129.65058, MR 2355168, 10.1002/num.20233
Reference: [4] Davie, A. M., Gaines, J. G.: Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations.Math. Comput. 70 (2001), 121-134. Zbl 0956.60064, MR 1803132, 10.1090/S0025-5718-00-01224-2
Reference: [5] Higham, D. J.: An algorithmic introduction to numerical simulation of stochastic differential equations.SIAM Rev. 43 (2001), 525-546. Zbl 0979.65007, MR 1872387, 10.1137/S0036144500378302
Reference: [6] Kloeden, P. E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Applications of Mathematics 23.Springer Berlin (1992). MR 1214374
Reference: [7] Komori, Y., Mitsui, T.: Stable ROW-type weak scheme for stochastic differential equations.Monte Carlo Methods Appl. 1 (1995), 279-300. Zbl 0938.65535, MR 1368807, 10.1515/mcma.1995.1.4.279
Reference: [8] Liu, S. L.: Stable explicit difference approximations to parabolic partial differential equations.AIChE J. 15 (1969), 334-338. 10.1002/aic.690150308
Reference: [9] McDonald, S.: Finite difference approximation for linear stochastic partial differential equation with method of lines.MPRA Paper No. 3983 (2006), \\http://mpra.ub.uni-muenchen.de/3983.
Reference: [10] Milstein, G. N.: Numerical Integration of Stochastic Differential Equations. Transl. from the Russian. Mathematics and its Applications 313.Kluwer Academic Publishers Dordrecht (1994). MR 1335454
Reference: [11] Rößler, A.: Stochastic Taylor expansions for the expectation of functionals of diffusion processes.Stochastic Anal. Appl. 22 (2004), 1553-1576. Zbl 1065.60068, MR 2095070, 10.1081/SAP-200029495
Reference: [12] Rößler, A., Seaïd, M., Zahri, M.: Method of lines for stochastic boundary-value problems with additive noise.Appl. Math. Comput. 199 (2008), 301-314. Zbl 1142.65007, MR 2415825, 10.1016/j.amc.2007.09.062
Reference: [13] Roth, C.: Difference methods for stochastic partial differential equations.Z. Angew. Math. Mech. 82 (2002), 821-830. Zbl 1010.60057, MR 1944425, 10.1002/1521-4001(200211)82:11/12<821::AID-ZAMM821>3.0.CO;2-L
Reference: [14] Roth, C.: Approximations of Solution of a First Order Stochastic Partial Differential Equation, Report.Institut Optimierung und Stochastik, Universität Halle-Wittenberg Halle (1989).
Reference: [15] Saul'yev, V. K.: Integration of Equations of Parabolic Type by the Method of Nets. Translated by G. J. Tee. International Series of Monographs in Pure and Applied Mathematics Vol. 54.K.L. Stewart Pergamon Press Oxford (1964). MR 0197994
Reference: [16] Saul'yev, V. K.: On a method of numerical integration of a diffusion equation.Dokl. Akad. Nauk SSSR 115 (1957), 1077-1080. MR 0142205
Reference: [17] Soheili, A. R., Niasar, M. B., Arezoomandan, M.: Approximation of stochastic parabolic differential equations with two different finite difference schemes.Bull. Iran. Math. Soc. 37 (2011), 61-83. Zbl 1260.60124, MR 2890579
Reference: [18] Strikwerda, J. C.: Finite difference schemes and partial differential equations. 2nd ed.Society for Industrial and Applied Mathematics Philadelphia (2004). Zbl 1071.65118, MR 2124284
Reference: [19] Thomas, J. W.: Numerical Partial Differential Equations: Finite Difference Methods. Texts in Applied Mathematics 22.Springer New York (1995). MR 1367964, 10.1007/978-1-4899-7278-1_7
.

Files

Files Size Format View
AplMat_58-2013-4_5.pdf 1.069Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo