Previous |  Up |  Next

Article

Keywords:
left almost Abelian rings; $\pi$-regular rings; Abelian rings; $(S,2)$ rings
Summary:
A ring $R$ is defined to be left almost Abelian if $ae=0$ implies $aRe=0$ for $a\in N(R)$ and $e\in E(R)$, where $E(R)$ and $N(R)$ stand respectively for the set of idempotents and the set of nilpotents of $R$. Some characterizations and properties of such rings are included. It follows that if $R$ is a left almost Abelian ring, then $R$ is $\pi $-regular if and only if $N(R)$ is an ideal of $R$ and $R/N(R)$ is regular. Moreover it is proved that (1) $R$ is an Abelian ring if and only if $R$ is a left almost Abelian left idempotent reflexive ring. (2) $R$ is strongly regular if and only if $R$ is regular and left almost Abelian. (3) A left almost Abelian clean ring is an exchange ring. (4) For a left almost Abelian ring $R$, it is an exchange $(S,2)$ ring if and only if $\mathbb Z/2\mathbb Z$ is not a homomorphic image of $R$.
References:
[1] Badawi, A.: On abelian $\pi$-regular rings. Comm. Algebra, 25, 4, 1997, 1009-1021, DOI 10.1080/00927879708825906 | MR 1437658 | Zbl 0881.16003
[2] Camillo, V.P., Yu, H.P.: Exchange rings, Units and idempotents. Comm. Algebra, 22, 12, 1994, 4737-4749, DOI 10.1080/00927879408825098 | MR 1285703 | Zbl 0811.16002
[3] Chen, H.Y.: A note on potent elements, Kyungpook. Math. J., 45, 2005, 519-526, MR 2205953
[4] Chen, W.X.: On semiabelian $\pi$-regular rings. Intern. J. Math. Sci., 23, 2007, 1-10, DOI 10.1155/2007/63171 | MR 2320775 | Zbl 1152.16009
[5] Ehrlich, G.: Unit regular rings. Portugal. Math., 27, 1968, 209-212, MR 0266962 | Zbl 0201.03901
[6] Henriksen, M.: Two classes of rings that are generated by their units. J. Algebra, 31, 1974, 182-193, DOI 10.1016/0021-8693(74)90013-1 | MR 0349745
[7] Kim, N.K., Nam, S.B., Kim, J.Y.: On simple singular $GP$-injective modules. Comm. Algebra, 27, 5, 1999, 2087-2096, DOI 10.1080/00927879908826551 | MR 1683853 | Zbl 0923.16008
[8] Lam, T.Y., Dugas, A.S.: Quasi-duo rings and stable range descent. J. Pure Appl. Algebra, 195, 2005, 243-259, DOI 10.1016/j.jpaa.2004.08.011 | MR 2114274 | Zbl 1071.16003
[9] Nicholson, W.K.: Lifting idempotents and exchange rings. Trans. Amer. Math. Soc., 229, 1977, 269-278, DOI 10.1090/S0002-9947-1977-0439876-2 | MR 0439876 | Zbl 0352.16006
[10] Nicholson, W.K.: Strongly clear rings and Fitting's Lemma. Comm. Algebra, 27, 8, 1999, 3583-3592, DOI 10.1080/00927879908826649 | MR 1699586
[11] Tuganbaev, A.: Rings close to regular. 2002, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 545, MR 1958361 | Zbl 1120.16012
[12] Vaserstein, L.N.: Bass' First stable range condition. J. Pure Appl. Algebra, 34, 1984, 319-330, DOI 10.1016/0022-4049(84)90044-6 | MR 0772066
[13] Wang, S.Q.: On op-idemotents. Kyungpook Math. J., 45, 2005, 171-175, MR 2160756
[14] Warfield, R.B.: A krull-Schmidt theorem for infinite sums of modules. Proc. Amer. Math. Soc., 22, 1969, 460-465, DOI 10.1090/S0002-9939-1969-0242886-2 | MR 0242886 | Zbl 0176.31401
[15] Warfield, R.B.: Exchange rings and decompositions of modules. Math. Ann., 199, 1972, 31-36, DOI 10.1007/BF01419573 | MR 0332893 | Zbl 0228.16012
[16] Wei, J.C.: Certain rings whose simple singular modules are nil-injective. Turk. J. Math., 32, 2008, 393-408, MR 2473657 | Zbl 1183.16004
[17] Wei, J.C., Chen, J.H.: $Nil$-injective rings. Intern. Electr. Jour. Algebra, 2, 2007, 1-21, MR 2320722 | Zbl 1123.16003
[18] Wu, T., Chen, P.: On finitely generated projective modules and exchange rings. Algebra Coll., 9, 4, 2002, 433-444, MR 1933852 | Zbl 1023.16002
[19] Yu, H.P.: On quasi-duo rings. Glasgow Math. J., 37, 1995, 21-31, DOI 10.1017/S0017089500030342 | MR 1316960 | Zbl 0819.16001
Partner of
EuDML logo