Previous |  Up |  Next


Title: Observer design for a class of nonlinear discrete-time systems with time-delay (English)
Author: Dong, Yali
Author: Liu, Jinying
Author: Mei, Shengwei
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 49
Issue: 2
Year: 2013
Pages: 341-358
Summary lang: English
Category: math
Summary: The problem of observer design for a class of nonlinear discrete-time systems with time-delay is considered. A new approach of nonlinear observer design is proposed for the class of systems. Based on differential mean value theory, the error dynamic is transformed into linear parameter variable system. By using Lyapunov stability theory and Schur complement lemma, the sufficient conditions expressed in terms of matrix inequalities are obtained to guarantee the observer error converges asymptotically to zero. Furthermore, the problem of observer design with affine gain is investigated. The computing method for observer gain matrix is given and it is also demonstrated that the observer error converges asymptotically to zero. Finally, an illustrative example is given to validate the effectiveness of the proposed method. (English)
Keyword: observer design
Keyword: stability
Keyword: time-delay
Keyword: differential mean value theory
Keyword: Lyapunov–Krasovskii functional
MSC: 93B07
MSC: 93B40
MSC: 93C55
MSC: 93C83
MSC: 93D05
MSC: 93D20
idZBL: Zbl 1264.93144
idMR: MR3085400
Date available: 2013-07-22T08:54:43Z
Last updated: 2016-01-03
Stable URL:
Reference: [1] Abbaszadeh, M., Marquez, H. J.: Dynamical robust $H_\infty$ filtering for nonlinear uncertain systems: An LMI approach..J. Franklin Inst. 347 (2010) , 1227-1241. Zbl 1202.93157, MR 2669300, 10.1016/j.jfranklin.2010.05.016
Reference: [2] Cacace, F., Germani, A., Manes, C.: An observer for a class of nonlinear systems with time varying observation delay..Systems Control Lett. 59 (2010), 305-312. Zbl 1191.93016, MR 2668922, 10.1016/j.sysconle.2010.03.005
Reference: [3] Dong, Y., Mei, S.: State observers for a class of multi-output nonlinear dynamic systems..Nonlinear Anal.: Theory, Methods and Appl. 74 (2011), 14, 4738-4745. Zbl 1221.93035, MR 2810713, 10.1016/
Reference: [4] Dong, Y., Yang, Y.: Observer design for a class of multi-input multi-output nonlinear systems..Internat. J. Systems Sci. 42 (2011), 4, 695-703. Zbl 1233.93014, MR 2770752, 10.1080/00207720903260143
Reference: [5] Germani, A., Manes, C., Pepe, P.: A new approach to state observation of nonlinear systems with delayed output..IEEE Trans. Automat. Control 47 (2002),1, 96-101. MR 1879694, 10.1109/9.981726
Reference: [6] Ibrir, S.: Observer-based control of a class of time-delay nonlinear systems having triangular structure..Automatica 47 (2011), 388-394. Zbl 1207.93015, MR 2878289, 10.1016/j.automatica.2010.10.052
Reference: [7] Ibrir, S., Xie, W. F., Su, C. Y.: Observer design for discrete-time systems subject to time-delay nonlinearities..Internat. J. Systems Sci. 37 (2006), 9, 629-641. Zbl 1101.93019, MR 2242898, 10.1080/00207720600774289
Reference: [8] Kwon, O. M., Park, J. H.: Exponential stability of uncertain dynamic systems including state delay..Appl. Math. Lett. 19 (2006), 901-907. Zbl 1220.34095, MR 2240481, 10.1016/j.aml.2005.10.017
Reference: [9] Laila, D. S., Lovera, M., Astolfi, A.: A discrete-time observer design for spacecraft attitude determination using anorthogonality-preserving algorithm..Automatica 47 (2011), 5, 975-980. MR 2878365, 10.1016/j.automatica.2011.01.049
Reference: [10] Lu, G.: Robust observer design for Lipschitz nonlinear discrete-time systems with time-delay..In: Proc. 9th International Conference on Control, Automation, Robotics and Vision, Grand Hyatt Singapore 2006, pp. 1-5.
Reference: [11] Lu, G., Ho, D. W. C.: Robust $H_\infty$ observer for a class of nonlinear discrete systems with time delay and parameter uncertainties..IEE Proc. Control Theory Appl. 151 (2004), 4, 439-444.
Reference: [12] Zemouche, A., Boutayeb, M., Bara, G. I.: Observers for a class of Lipschitz systems with extension to $H_\infty$ performance analysis..Systems Control Lett. 57 (2008), 18-27. Zbl 1129.93006, MR 2365299, 10.1016/j.sysconle.2007.06.012
Reference: [13] Wang, Y., Lynch, A. F.: Observer design using a generalized time-scaled block triangular observer form..Systems Control Lett. 58 (2009), 346-352. Zbl 1159.93327, MR 2512489, 10.1016/j.sysconle.2008.12.005
Reference: [14] Xu, S., Lu, J., Zhou, S., Yang, C.: Design of observers for a class of discrete-time uncertain nonlinear systems with time delay..J. Franklin Inst. 341 (2004), 295-308. Zbl 1073.93007, MR 2054478, 10.1016/j.jfranklin.2003.12.012
Reference: [15] Zemouche, A., Boutayeb, M.: Observer design for Lipschitz nonlinear systems: The discrete-time case..IEEE Trans. Circuits and Systems - II: Express Briefs 53 (2006), 8, 777-781.
Reference: [16] Zemouche, A., Boutayeb, M.: A new observer design method for a class of Lipschitz nonlinear discrete-time systems with time-delay extension to $H_\infty$ performance analysis..In: Proc. 46th IEEE Conference on Decision and Control, New Orleans 2007, pp. 414-419.
Reference: [17] Zemouche, A., Boutayeb, M., Bara, G. I.: On observers design for nonlinear time-delay systems..In: Proc. American Control Conference, Minneapolis 2006, pp. 4025-4030.
Reference: [18] Zemouche, A., Boutayeb, M., Bara, G. I.: Observer design for a class of nonlinear time-delay systems..In: Proc. 2007 American Control Conference Marriott Marquis Hotel at Times Square, New York City 2007, pp. 1676-1681.


Files Size Format View
Kybernetika_49-2013-2_9.pdf 400.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo