[1] Balbes, R., Dwinger, P.: 
Distributive Lattices.  University Missouri Press, Columbia, 1974. 
MR 0373985 | 
Zbl 0321.06012 
[2] Cignoli, R. L. O., D’Ottaviano, M. L., Mundici, D.: 
Algebraic Foundations of Many-valued Reasoning.  Kluwer Academic Publishers, Dordrecht, 2000. 
MR 1786097 
[4] Ciungu, L. C.: 
Classes of residuated lattices.  Annals of University of Craiova. Math. Comp. Sci. Ser. 33 (2006), 180–207. 
MR 2359903 | 
Zbl 1119.03343 
[5] Dvurečenskij, A., Rachůnek, J.: 
On Riečan and Bosbach states for bounded R$\ell $-monoids.  Math. Slovaca 56 (2006), 487–500. 
MR 2293582 
[7] Esteva, F., Godo, L.: 
Monoidal t-norm based logic: towards a logic for left-continuous t-norms.  Fuzzy Sets Syst. 124 (2001), 271–288. 
MR 1860848 | 
Zbl 0994.03017 
[8] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: 
Residuated Lattices: An Algebraic Glimpse at Substructural Logics.  Elsevier, Amsterdam, 2007. 
MR 2531579 | 
Zbl 1171.03001 
[9] Hájek, P.: 
Metamathematics of Fuzzy Logic.  Springer, Dordrecht, 1998. 
MR 1900263 
[11] Jipsen, P., Tsinakis, C.: 
A Survey of Residuated Lattices.  In: Ordered Algebraic Structures, Kluwer, Dordrecht, (2006), 19–56. 
MR 2083033 
[12] Rachůnek, J., Slezák, V.: 
Negation in bounded commutative DR$\ell $-monoids.  Czechoslovak Math. J. 56 (2007), 755–763. 
DOI 10.1007/s10587-006-0053-1 
[13] Rachůnek, J., Švrček, F.: 
MV-algebras with additive closure operators.  Acta Univ. Palacki. Olomouc., Fac. Rer. Nat., Math. 39 (2000), 183–189. 
MR 1826361 | 
Zbl 1039.06005 
[15] Sikorski, R.: 
Boolean Algebras.  2nd edition, Springer-Verlag, Berlin–Göttingen–Heidelbeg–New York, 1963. 
Zbl 0122.26101