[Br1] Breit D.: Regularitätssätze für Variationsprobleme mit anisotropen Wachstumsbedingungen. PhD thesis, Saarland University, 2009.
[BFZ] Bildhauer M., Fuchs M., Zhong X.: 
A lemma on the higher integrability of functions with applications to the regularity theory of two-dimensional generalized Newtonian fluids. Manuscripta Math. 116 (2005), no. 2, 135–156. 
DOI 10.1007/s00229-004-0523-4 | 
MR 2122416 | 
Zbl 1116.49018[ELM2] Esposito L., Leonetti F., Mingione G.: 
Regularity for minimizers of irregular integrals with $(p,q)$-growth. Forum Mathematicum 14 (2002), 245–272. 
DOI 10.1515/form.2002.011 | 
MR 1880913[Gi] Giaquinta M.: 
Introduction to Regularity Theory for Nonlinear Elliptic Systems. Birkhäuser, Basel-Boston-Berlin, 1993. 
MR 1239172 | 
Zbl 0786.35001[KMS] Kaplický P., Málek J., Stará J.: 
$C^{1,\alpha}$-solutions to a class of nonlinear fluids in two dimensions --- stationary Dirichlet problem. Zap. Nauchn. Sem. POMI 259 (1999), 122–144. 
Zbl 0978.35046[La] Ladyzhenskaya O.A.: 
The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York-London-Paris, 1969. 
MR 0254401 | 
Zbl 0184.52603[MNRR] Málek J., Nečas J., Rokyta M., Růžička M.: 
Weak and Measure Valued Solutions to Evolutionary PDEs. Chapman & Hall, London-Weinheim-New York, 1996. 
MR 1409366 | 
Zbl 0851.35002[Mo] Morrey C.B.: 
Multiple integrals in the calculus of variations. Grundlehren der math. Wiss. in Einzeldarstellungen, 130, Springer, Berlin-Heidelberg, 1966. 
MR 2492985 | 
Zbl 1213.49002[Wo] Wolf J.: 
Interior $C^{1,\alpha}$-regularity of weak solutions to the equations of stationary motions of certain non-Newtonian fluids in two dimensions. Boll. Unione Mat. Ital. Sez. B (8) 10 (2007), 317–340. 
MR 2339444