Article
Keywords:
convergence in measure; almost sure convergence; pointwise compactness; Lusin property; strongly consistent estimators
Summary:
The present article studies the 
conditions under which the almost 
everywhere convergence and the 
convergence in measure coincide. 
An application in the statistical 
estimation theory is outlined as 
well.
References:
                        
[1] Asanov M.O., Veličko N.V.: Kompaktnye množestva v $C_p(X)$. Comment. Math. Univ. Carolinae 22 (1981), 255–266.
[3] Dunford N., Schwartz J.T.: 
Linear Operators Part I: General Theory. John Wiley & Sons, Inc., New Jersey, 1988. 
MR 1009162 | 
Zbl 0635.47001[4] Fremlin D.H.: 
Measure Theory, Vol 4, Topological Measure Spaces. Colchester: Torres Fremlin, 2003. 
MR 2462372 | 
Zbl 1166.28001[5] Ionescu Tulcea A.: 
On pointwise convergence, compactness and equicontinuity I. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 26 (1973), 197–205. 
DOI 10.1007/BF00532722 | 
MR 0405102[8] Kříž P.: How to construct Borel measurable PLIFs?. WDS'11 Proc. of Contr. Papers, Part I, (2011), 43–48.