Previous |  Up |  Next

Article

Keywords:
cone-monotone function; Fréchet differentiability; Gâteaux differentiability; pointwise Lipschitz function; $\Gamma$-null set; quasiconvex function; separable reduction
Summary:
We present some consequences of a deep result of J. Lindenstrauss and D. Preiss on $\Gamma$-almost everywhere Fréchet differentiability of Lipschitz functions on $c_0$ (and similar Banach spaces). For example, in these spaces, every continuous real function is Fréchet differentiable at $\Gamma$-almost every $x$ at which it is Gâteaux differentiable. Another interesting consequences say that both cone-monotone functions and continuous quasiconvex functions on these spaces are $\Gamma$-almost everywhere Fréchet differentiable. In the proofs we use a general observation that each version of the Rademacher theorem for real functions on Banach spaces (i.e., a result on a.e. Fréchet or Gâteaux differentiability of Lipschitz functions) easily implies by a method of J. Malý a corresponding version of the Stepanov theorem (on a.e. differentiability of pointwise Lipschitz functions). Using the method of separable reduction, we extend some results to several non-separable spaces.
References:
[1] Benyamini Y., Lindenstrauss J.: Geometric Nonlinear Functional Analysis, Vol. 1. Colloquium Publications, 48, American Mathematical Society, Providence, 2000. MR 1727673
[2] Bongiorno D.: Stepanoff's theorem in separable Banach spaces. Comment. Math. Univ. Carolin. 39 (1998), 323–335. MR 1651959 | Zbl 0937.46038
[3] Bongiorno D.: Radon-Nikodým property of the range of Lipschitz extensions. Atti Sem. Mat. Fis. Univ. Modena 48 (2000), 517–525. MR 1811552
[4] Borwein J.M., Wang X.: Cone monotone functions, differentiability and continuity. Canad. J. Math. 57 (2005), 961–982. DOI 10.4153/CJM-2005-037-5 | MR 2164591 | Zbl 1095.49015
[5] Conway J.B.: A course in functional analysis. 2nd ed., Graduate Texts in Mathematics, 96, Springer, New York, 1990. MR 1070713 | Zbl 0706.46003
[6] Crouzeix J.-P.: Continuity and differentiability of quasiconvex functions. Handbook of generalized convexity and generalized monotonicity, pp. 121–149, Nonconvex Optim. Appl. 76, Springer, New York, 2005. DOI 10.1007/0-387-23393-8_3 | MR 2098899 | Zbl 1077.49015
[7] Cúth M.: Separable reduction theorems by the method of elementary submodels. Fund. Math. 219 (2012), 191–222. DOI 10.4064/fm219-3-1 | MR 3001239 | Zbl 1270.46015
[8] Duda J.: Metric and $w^*$-differentiability of pointwise Lipschitz mappings. Z. Anal. Anwend. 26 (2007), 341–362. DOI 10.4171/ZAA/1328 | MR 2322838 | Zbl 1143.26006
[9] Duda J.: On Gâteaux differentiability of pointwise Lipschitz mappings. Canad. Math. Bull. 51 (2008), 205–216. DOI 10.4153/CMB-2008-022-6 | MR 2414208 | Zbl 1152.46030
[10] Duda J.: Cone monotone mappings: continuity and differentiability. Nonlinear Anal. 68 (2008), 1963–1972. DOI 10.1016/j.na.2007.01.023 | MR 2388756 | Zbl 1135.46046
[11] Engelking R.: General Topology. 2nd ed., Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[12] Fabian M., Habala P., Hájek P., Montesinos Santalucía V., Pelant J., Zizler V.: Functional analysis and infinite-dimensional geometry. CMS Books in Mathematics, 8, Springer, New York, 2001. MR 1831176 | Zbl 0981.46001
[13] Górak R.: A note on differentiability of Lipschitz maps. Bull. Pol. Acad. Sci. Math. 58 (2010), 259–268. DOI 10.4064/ba58-3-8 | MR 2771575 | Zbl 1214.46025
[14] Lindenstrauss J., Preiss D.: On Fréchet differentiability of Lipschitz maps between Banach spaces. Ann. of Math. 157 (2003), 257–288. DOI 10.4007/annals.2003.157.257 | MR 1954267 | Zbl 1171.46313
[15] Lindenstrauss J., Preiss D., Tišer J.: Fréchet Differentiability of Lipschitz Maps and Porous Sets in Banach Spaces. Princeton University Press, Princeton, 2012. MR 2884141 | Zbl 1139.46036
[16] Malý J.: A simple proof of the Stepanov theorem on differentiability almost everywhere. Exposition. Math. 17 (1999), 59–61. MR 1687460 | Zbl 0930.26005
[17] Malý J., Zajíček L.: On Stepanov type differentiability theorems. submitted.
[18] McShane E.J.: Extension of range of functions. Bull. Amer. Math. Soc. 40 (1934), 837–842. DOI 10.1090/S0002-9904-1934-05978-0 | MR 1562984 | Zbl 0010.34606
[19] Preiss D.: Differentiability of Lipschitz functions on Banach spaces. J. Funct. Anal. 91 (1990), 312–345. DOI 10.1016/0022-1236(90)90147-D | MR 1058975 | Zbl 0872.46026
[20] Preiss D., Zajíček L.: Fréchet differentiation of convex functions in a Banach space with a separable dual. Proc. Amer. Math. Soc. 91 (1984), 202–204. MR 0740171 | Zbl 0521.46034
[21] Preiss D., Zajíček L.: Directional derivatives of Lipschitz functions. Israel J. Math. 125 (2001), 1–27. DOI 10.1007/BF02773371 | MR 1853802
[22] Rabier P.J.: Differentiability of quasiconvex functions on separable Banach spaces. preprint, 2013, arXiv:1301.2852v2. MR 3136598
[23] Zajíček L.: Fréchet differentiability, strict differentiability and subdifferentiability. Czechoslovak Math. J. 41 (1991), 471–489. MR 1117801 | Zbl 0760.46038
[24] Zajíček L.: On $\sigma$-porous sets in abstract spaces. Abstr. Appl. Anal. 2005 (2005), 509–534. DOI 10.1155/AAA.2005.509 | MR 2201041 | Zbl 1098.28003
[25] Zajíček L.: On sets of non-differentiability of Lipschitz and convex functions. Math. Bohem. 132 (2007), 75–85. MR 2311755 | Zbl 1171.46314
[26] Zajíček L.: Hadamard differentiability via Gâteaux differentiability. Proc. Amer. Math. Soc.(to appear).
Partner of
EuDML logo