[1] Balasubramaniam, P., Rakkiyappan, R.: 
Delay-dependent robust stability analysis for Markovian jumping stochastic Cohen-Grossberg neural networks with discrete interval and distributed time-varying delays. Nonlinear Anal. Hybrid Syst. 3 (2009), 207-214. 
MR 2535910 | 
Zbl 1184.93093 
[5] Ding, Y. C., Zhu, H., Zhong, S. M., Zhang, Y. P.: 
$L_{2}-L_{\infty}$ filtering for Markovian jump systems with time-varying delays and partly unknown transition probabilities. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 3070-3081. 
DOI 10.1016/j.cnsns.2011.11.033 | 
MR 2880476 | 
Zbl 1243.62118 
[7] Gronwall, T. H.: 
Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20 (1919), 292-296. 
DOI 10.2307/1967124 | 
MR 1502565 
[8] Gu, K.: An integral inequality in the stability problem of time-delay systems. In: Proc. 39th IEEE Conference on Decision and Control, Sydney 2000, pp. 2805-2810.
[12] Hale, J. K., Lunel, S. M. V.: 
Introduction To Functional Differential Equations. Springer, New York 1993. 
MR 1243878 | 
Zbl 0787.34002 
[16] Lam, J., Gao, H., Wang, C.: $H_{\infty}$ model reduction of linear systems with distributed delay. Control Theory and Applications, IEE Proc. 152 (2005), 662-674.
[17] Lawrence, C. E.: 
An introduction to stochastic differential equations. math.berkeley.edu/ evans/SDE.course.pdf. 
MR 3154922 
[19] Liu, Y., Wang, Z., Liu, X.: 
Robust $H_{\infty}$ control for a class of nonlinear stochastic systems with mixed time delay. Int. J. Robust Nonlinear Control 17 (2007), 1525-1551. 
DOI 10.1002/rnc.1185 | 
MR 2356998 | 
Zbl 1128.93015 
[20] Liu, Y., Wang, Z., Liu, X.: 
An LMI approach to stability analysis of stochastic high-order Markovian jumping neural networks with mixed time delays. Nonlinear Anal. Hybrid Syst. 2 (2008), 110-120. 
MR 2381041 | 
Zbl 1157.93039 
[21] Ma, L., Da, F. P.: 
Exponential $H_{\infty}$ filter design for stochastic time-varying delay systems with Markovian jumping parameters. Int. J. Robust and Nonlinear Control 20 (2010), 802-817. 
DOI 10.1002/rnc.1477 | 
MR 2657281 
[22] Ma, L., Da, F. P., Zhang, K. J.: 
Exponential $H_{\infty}$ Filter Design for Discrete Time-Delay Stochastic Systems With Markovian Jump Parameters and Missing Measurements. IEEE Trans. Circuits Syst. I: Regul. Pap. 58 (2011), 994-1007. 
DOI 10.1109/TCSI.2010.2089554 | 
MR 2827933 
[23] Mariton, M.: Jump Linear Systems In Automatic Control. Marcel Dekker, New York 1990.
[24] Mao, X. R.: 
Exponential stability of stochastic delay interval systems with Markovian switching. IEEE Trans. Automat. Control 47 (2002), 1604-1612. 
DOI 10.1109/TAC.2002.803529 | 
MR 1929934 
[26] Wang, Z., Lauria, S., Fang, J., Liu, X.: 
Exponential stability of uncettain stochastic neural networks with mixed time-delays. Chaos, Solitons Fractals 32 (2007), 62-72. 
DOI 10.1016/j.chaos.2005.10.061 | 
MR 2271102 
[27] Wang, Y., Zhang, H.: 
$H_{\infty}$ control for uncertain Markovian jump systems with mode-dependent mixed delays. Progress Natural Sci. 18 (2008), 309-314. 
MR 2419784 
[28] Wang, G. L., Zhang, Q. L., Yang, C. Y.: 
Exponential $H_{\infty}$ filtering for time-varying delay systems: Markovian approach. Signal Process. 91 (2011), 1852-1862. 
Zbl 1217.93170 
[30] Wu, L., Shi, P., Wang, C., Gao, H.: 
Delay-dependent robust $H_{\infty}$ and $L_{2}-L_{\infty}$ filtering for LPV systems with both discrete and distributed delays. Control Theory and Applications, IEE Proc. 153 (2006), 483-492. 
MR 2351871 
[31] Xie, L., Fridman, E., Shaked, U.: 
Robust $H_{\infty}$ control of distributed delay systems with application to combustion control. IEEE Trans. Automat. Control 46 (2001), 1930-1935. 
DOI 10.1109/9.975483 | 
MR 1878215 | 
Zbl 1017.93038 
[33] Xu, S., Chen, T.: 
An LMI approach to the $H_{\infty}$ filter design for uncertain systems with distributed delays. IEEE Trans. Circuits Syst.-II: Express Briefs 51 (2004), 195-201. 
DOI 10.1109/TCSII.2003.822432 
[34] Xu, S., Chu, Y., Lu, J., Zou, Y.: 
Exponential dynamic output feedback controller design for stochastic neutral systems with distributed delays. IEEE Trans. Systems, Man, Cybernetics - Part A: Systems and Humans 36 (2006), 540-548. 
DOI 10.1109/TSMCA.2006.871648 
[35] Xu, S., Lam, J., Chen, T., Zou, Y.: 
A delay-dependent approach to robust $H_{\infty}$ filtering for uncertain distributed delay systems. IEEE Trans. Signal Process. 53 (2005), 3764-3772. 
DOI 10.1109/TSP.2005.855109 | 
MR 2239897 
[37] Yue, D., Han, Q. L.: 
Robust $H_{\infty}$ filter design of uncertain descriptor systems with discrete and distributed delays. IEEE Trans. Signal Process. 52 (2004), 3200-3212. 
DOI 10.1109/TSP.2004.836535 | 
MR 2095601 
[38] Yue, D., Han, Q. L.: 
Delay-dependent exponential stability of stochastic systems with time-varying delay, nonlinearity, and Markovian switching. IEEE Trans. Automat. Control 50 (2005), 217-222. 
DOI 10.1109/TAC.2004.841935 | 
MR 2116427 
[39] Zhang, X. M., Han, Q. L.: 
A less conservative method for designing $H_{\infty}$ filters for linear time-delay systems. Int. J. Robust and Nonlinear Control 19 (2009), 1376-1396. 
DOI 10.1002/rnc.1407 | 
MR 2537820 | 
Zbl 1169.93418