[2] Babuška, I., Osborn, J.: 
Eigenvalue problems. P. G. Ciarlet, et al. Handbook of Numerical Analysis. Volume II: Finite element methods (Part 1) North-Holland Amsterdam (1991), 641-787. 
MR 1115240 
[10] Ciarlet, P. G.: 
The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications. Vol. 4 North-Holland Publishing Company, Amsterdam (1978). 
MR 0520174 | 
Zbl 0383.65058 
[12] Golub, G. H., Loan, C. F. Van: 
Matrix Computations. (3rd ed.). The Johns Hopkins Univ. Press Baltimore (1996). 
MR 1417720 
[13] Hackbusch, W.: 
Multi-Grid Methods and Applications. Springer Series in Computational Mathematics 4 Springer, Berlin (1985). 
Zbl 0595.65106 
[15] Huang, P., He, Y., Feng, X.: 
Numerical investigations on several stabilized finite element methods for the Stokes eigenvalue problem. Math. Probl. Eng. 2011 (2011), Article ID 745908, 14 pages. 
MR 2826898 | 
Zbl 1235.74286 
[16] Huang, P., He, Y., Feng, X.: 
Two-level stabilized finite element method for the Stokes eigenvalue problem. Appl. Math. Mech., Engl. Ed. 33 (2012), 621-630. 
DOI 10.1007/s10483-012-1575-7 | 
MR 2978223 
[22] Peters, G., Wilkinson, J. H.: 
Inverse iteration, ill-conditioned equations and Newton's method. SIAM Rev. 21 (1979), 339-360. 
DOI 10.1137/1021052 | 
MR 0535118 
[23] Roos, H.-G., Stynes, M., Tobiska, L.: 
Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems. (2nd ed.). Springer Series in Computational Mathematics 24 Springer, Berlin (2008). 
MR 2454024 | 
Zbl 1155.65087 
[28] Yang, Y., Bi, H.: 
Two-grid finite element discretization schemes based on shifted-inverse power method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 49 (2011), 1602-1624. 
DOI 10.1137/100810241 | 
MR 2831063 | 
Zbl 1236.65143