[1] Cvetković, D. M., Doob, M., Sachs, H.: 
Spectra of Graphs. Theory and Applications. 3rd rev. a. enl. J. A. Barth, Leipzig (1995). 
MR 1324340 | 
Zbl 0824.05046[4] Cvetković, D., Simić, S. K.: 
Towards a spectral theory of graphs based on signless Laplacian. I. Publ. Inst. Math., Nouv. Sér. 85 (2009), 19-33. 
MR 2536686[6] Ghareghani, N., Omidi, G. R., Tayfeh-Rezaie, B.: 
Spectral characterization of graphs with index at most $\sqrt{2+\sqrt{5}}$. Linear Algebra Appl. 420 (2007), 483-489. 
MR 2278224 | 
Zbl 1107.05058[8] Ramezani, F., Broojerdian, N., Tayfeh-Rezaie, B.: 
A note on the spectral characterization of $\theta$-graphs. Linear Algebra Appl. 431 (2009), 626-632. 
MR 2535538 | 
Zbl 1203.05098[9] Dam, E. R. van, Haemers, W. H.: 
Which graphs are determined by their spectrum?. Linear Algebra Appl. Special issue on the Combinatorial Matrix Theory Conference (Pohang, 2002) 373 (2003), 241-272. 
MR 2022290[13] Wang, W., Xu, C. X.: 
Note: The $T$-shape tree is determined by its Laplacian spectrum. Linear Algebra Appl. 419 (2006), 78-81. 
MR 2263111