| Title: | The group of commutativity preserving maps on strictly upper triangular matrices (English) | 
| Author: | Wang, Dengyin | 
| Author: | Zhu, Min | 
| Author: | Rou, Jianling | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 64 | 
| Issue: | 2 | 
| Year: | 2014 | 
| Pages: | 335-350 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | Let $\mathcal {N}=N_n(R)$ be the algebra of all $n\times n$ strictly upper triangular matrices over a unital commutative ring $R$. A map $\varphi $ on $\mathcal {N}$ is called preserving commutativity in both directions if $xy=yx\Leftrightarrow \varphi (x)\varphi (y)=\varphi (y)\varphi (x)$. In this paper, we prove that each invertible linear map on $\mathcal {N}$ preserving commutativity in both directions is exactly a quasi-automorphism of $\mathcal {N}$, and a quasi-automorphism of $\mathcal {N}$ can be decomposed into the product of several standard maps, which extains the main result of Y. Cao, Z. Chen and C. Huang (2002) from fields to rings. (English) | 
| Keyword: | commutativity preserving map | 
| Keyword: | automorphism | 
| Keyword: | commutative ring | 
| MSC: | 13C10 | 
| MSC: | 15A04 | 
| MSC: | 15A27 | 
| MSC: | 15A99 | 
| MSC: | 17C30 | 
| idZBL: | Zbl 06391498 | 
| idMR: | MR3277740 | 
| DOI: | 10.1007/s10587-014-0105-x | 
| . | 
| Date available: | 2014-11-10T09:32:09Z | 
| Last updated: | 2020-07-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/144002 | 
| . | 
| Reference: | [1] Brešar, M.: Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings.Trans. Am. Math. Soc. 335 525-546 (1993). Zbl 0791.16028, MR 1069746, 10.1090/S0002-9947-1993-1069746-X | 
| Reference: | [2] Cao, Y., Chen, Z., Huang, C.: Commutativity preserving linear maps and Lie automorphisms of strictly triangular matrix space.Linear Algebra Appl. 350 41-66 (2002). Zbl 1007.15007, MR 1906746 | 
| Reference: | [3] Cao, Y., Tan, Z.: Automorphisms of the Lie algebra of strictly upper triangular matrices over a commutative ring.Linear Algebra Appl. 360 105-122 (2003). Zbl 1015.17017, MR 1948476 | 
| Reference: | [4] Marcoux, L. W., Sourour, A. R.: Commutativity preserving linear maps and Lie automorphisms of triangular matrix algebras.Linear Algebra Appl. 288 89-104 (1999). Zbl 0933.15029, MR 1670535 | 
| Reference: | [5] Omladič, M.: On operators preserving commutativity.J. Funct. Anal. 66 105-122 (1986). Zbl 0587.47051, MR 0829380, 10.1016/0022-1236(86)90084-4 | 
| Reference: | [6] Šemrl, P.: Non-linear commutativity preserving maps.Acta Sci. Math. 71 781-819 (2005). MR 2206609 | 
| Reference: | [7] Wang, D., Chen, Z.: Invertible linear maps on simple Lie algebras preserving commutativity.Proc. Am. Math. Soc. 139 3881-3893 (2011). Zbl 1258.17014, MR 2823034, 10.1090/S0002-9939-2011-10834-7 | 
| Reference: | [8] Watkins, W.: Linear maps that preserve commuting pairs of matrices.Linear Algebra Appl. 14 29-35 (1976). Zbl 0329.15005, MR 0480574, 10.1016/0024-3795(76)90060-4 | 
| . |