[1] Baratchart, L., Leblond, J.: 
Harmonic identification and Hardy class trace on an arc of the circle. Optimisation et Contrôle. Proceedings of the Colloquium in Honor of Jean Céa's sixtieth birthday held in Sophia-Antipolis, 1992 J.-A. Désidéri Cépaduès Éditions Toulouse (1993), 17-29 French. 
MR 1284961 | 
Zbl 0922.93012[2] Baratchart, L., Leblond, J., Partington, J. R.: 
Hardy approximation to $L^\infty$ functions on subsets of the circle. Constr. Approx. 12 (1996), 423-435. 
MR 1405007[3] Baratchart, L., Zerner, M.: 
On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk. J. Comput. Appl. Math 46 (1993), 255-269. 
DOI 10.1016/0377-0427(93)90300-Z | 
MR 1222486[4] Brézis, H.: 
Functional Analysis. Theory and Applications. Collection of Applied Mathematics for the Master's Degree Masson, Paris (1983), French. 
MR 0697382[6] Chaabane, S., Fellah, I., Jaoua, M., Leblond, J.: 
Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems. Inverse Probl. 20 (2004), 47-59. 
MR 2044605 | 
Zbl 1055.35135[7] Chaabane, S., Ferchichi, J., Kunisch, K.: 
Differentiability properties of the $L^{1}$-tracking functional and application to the Robin inverse problem. Inverse Probl. 20 (2004), 1083-1097. 
MR 2087981[8] Chaabane, S., Jaoua, M.: 
Identification of Robin coefficients by the means of boundary measurements. Inverse Probl. 15 (1999), 1425-1438. 
MR 1733209 | 
Zbl 0943.35100[10] Chalendar, I., Partington, J. R.: 
Approximation problems and representations of Hardy spaces in circular domains. Stud. Math. 136 (1999), 255-269. 
MR 1724247 | 
Zbl 0952.30033[11] Chevreau, B., Pearcy, C. M., Shields, A. L.: 
Finitely connected domains $G$, representations of $H^{\infty}(G)$, and invariant subspaces. J. Oper. Theory 6 (1981), 375-405. 
MR 0643698[12] Duren, P. L.: 
Theory of $H^p$ Spaces. Pure and Applied Mathematics 38 Academic Press, New York (1970). 
MR 0268655[15] Gagliardo, E.: 
Proprietà di alcune classi di funzioni più variabili. Ricerche Mat. 7 (1958), 102-137 Italian. 
MR 0102740[19] Marangunić, L. J., Pečarić, J.: 
On Landau type inequalities for functions with Hölder continuous derivatives. JIPAM, J. Inequal. Pure Appl. Math. (electronic only) 5 (2004), Paper No. 72, 5 pages. 
MR 2084881 | 
Zbl 1060.26018[21] Mitrinović, D. S., Pečarić, J. E., Fink, A. M.: 
Inequalities Involving Functions and Their Integrals and Derivatives. Mathematics and Its Applications: East European Series 53 Kluwer Academic Publishers, Dordrecht (1991). 
MR 1190927 | 
Zbl 0744.26011[22] Niculescu, C. P., Buşe, C.: 
The Hardy-Landau-Littlewood inequalities with less smoothness. JIPAM, J. Inequal. Pure Appl. Math. (electronic only) 4 (2003), Paper No. 51, 8 pages. 
MR 2044400 | 
Zbl 1059.26010[23] Nirenberg, L.: 
An extended interpolation inequality. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 20 (1966), 733-737. 
MR 0208360 | 
Zbl 0163.29905[24] Rudin, W.: 
Analytic functions of class $H^p$. Trans. Am. Math. Soc. 78 (1955), 46-66. 
MR 0067993[25] Sarason, D.: 
The $H^p$ Spaces of An Annulus. Memoirs of the American Mathematical Society 56 AMS, Providence (1965). 
MR 0188824