Article
Keywords:
multivariate copulas; transformations; symmetry; order; measures of concordance
Summary:
The present paper introduces a group of transformations on the collection of all multivariate copulas. The group contains a subgroup which is of particular interest since its elements preserve symmetry, the concordance order between two copulas and the value of every measure of concordance.
References:
                        
[1] Durante, F., Sempi, C.: 
Copula theory: an introduction. In: Copula Theory and Its Applications (P. Jaworski, F. Durante, W. Häerdle, T. Rychlik, eds.), Springer, Berlin, Heidelberg 2010, pp. 3-31. 
MR 3051261 
[2] Dolati, A., Úbeda-Flores, M.: 
On measures of multivariate concordance. J. Probab. Stat. Sci. 4 (2006), 147-163. 
MR 2488161 
[3] Fuchs, S., Schmidt, K. D.: 
Bivariate copulas: Transformations, asymmetry and measure of concordance. Kybernetika 50 (2013), 109-125. 
MR 3195007 
[4] Nelsen, R. B.: 
An Introduction to Copulas. Second Edition. Springer, New York 2006. 
MR 2197664 
[6] Taylor, M. D.: Some properties of multivariate measures of concordance. arXiv:0808.3105 (2008).
[7] Taylor, M. D.: 
Multivariate measures of concordance for copulas and their marginals. arXiv:1004.5023 (2010). 
MR 2397737