Previous |  Up |  Next


stable distribution; sub-Gaussian distribution; maximum likelihood; characteristic function
In this paper, we present a parameter estimation method for sub-Gaussian stable distributions. Our algorithm has two phases: in the first phase, we calculate the average values of harmonic functions of observations and in the second phase, we conduct the main procedure of asymptotic maximum likelihood where those average values are used as inputs. This implies that the main procedure of our method does not depend on the sample size of observations. The main idea of our method lies in representing the partial derivative of the density function with respect to the parameter that we estimate as the sum of harmonic functions and using this representation for finding this parameter. For fifteen summands we get acceptable precision. We demonstrate this methodology on estimating the tail index and the dispersion matrix of sub-Gaussian distributions.
[1] Carrasco, M., Florens, J.: Generalization of GMM to a continuum moment condition. Econom. Theory 16 (2000), 767-834. DOI 10.1017/S0266466600166010 | MR 1803711
[2] Chambers, J. M., Mallows, C L., Stuck, B. W.: A method for simulating stable random variables. J. Amer. Statist. Assoc. 71 1976), 340-344. DOI 10.1080/01621459.1976.10480344 | MR 0415982 | Zbl 0341.65003
[3] Cheng, B. N., Rachev, S.: Multivariate stable securities in financial markets. Math. Finance 5 (1995), 133-153.
[4] DuMouchel, W. H.: Stable Distributions in Statistical Inference. PhD. Thesis, University of Ann Arbor, Ann Arbor 1971. MR 2620950 | Zbl 0321.62017
[5] Fama, E.: Portfolio analysis in a stable Paretian market. Management Sci. 11 (1965), 404-419. DOI 10.1287/mnsc.11.3.404 | Zbl 0129.11903
[6] Hill, B. M.: A simple general approach to inference about the tail of a stable distribution. Ann. Stat. 3 (1975), 5, 1163-1174. DOI 10.1214/aos/1176343247 | MR 0378204
[7] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press 1985. MR 0832183 | Zbl 0801.15001
[8] Kagan, A.: Fisher information contained in a finite-dimensional linear space, and a properly formulated version of the method of moments (in Russian). Problemy Peredachi Informatsii 12 (2009), 15-29. MR 0413340
[9] Klebanov, L.: Heavy Tailed Distributions. Matfyzpress, Prague 2003.
[10] Koutrovelis, I. A.: Regression-type estimation of the parameters of stable laws. J. Amer. Statist. Assoc. 75 (1980), 918-928. DOI 10.1080/01621459.1980.10477573 | MR 0600977
[11] Kring, S., Rachev, S., Höchstötter, M., Fabozzi, F. J.: Estimation of Alpha-Stable Sub-Gaussian Distributions for Asset Returns. In: Risk Assessment: Decisions in Banking and Finance. Physica-Verlag, Heidelberg 2008, pp. 111-152. Zbl 1154.91601
[12] Madan, D. B., Seneta, E.: The variance gamma model from shared market returns. J. Bus. 63 (1990), 511-524. DOI 10.1086/296519
[13] Mandelbrot, B.: The variation of certain speculative prices. J. Bus. 26 (1963), 394-419. DOI 10.1086/294632
[14] McCulloch, J. H.: Simple consistent estimators of stable distribution parameters. Commun. Statist. - Simula 15 (1986), 1109-1136. DOI 10.1080/03610918608812563 | MR 0876783 | Zbl 0612.62028
[15] McCulloch, J. H.: Estimation of the bivariate stable spectral representation by the projection method. Comput. Econom. 16 (2000), 47-62. DOI 10.1023/A:1008797318867 | Zbl 0964.62108
[16] Mittnik, S., Rachev, S.: Tail estmation of the stable index alpha. Applied mathematics. Letters 9 (1996), 3, 53-56. MR 1385999
[17] Mittnik, S., Paolella, M. S.: Prediction of Financial Downside-Risk with Heavy-Tailed Conditional Distributions.
[18] Nolan, J. P.: Modeling Financial Data with Stable Distributions. In: Handbook of Heavy Tailed Distributions in Finance, Handbooks in Finance: Book 1 (2003), pp. 105-130.
[19] Nolan, J. P.: Maximum likelihood estimation and diagnostics for stable distributions. In: Lévy Processes (O. E. Barndorff-Nielsen, T. Mikosch, and S. Resnick, eds.), Brikhauser, Boston 2001. MR 1833706 | Zbl 0971.62008
[20] Nolan, J. P., Panorska, A. K.: Data analysis for heavy tailed multivariate samples. Commun. Statist.: Stochastic Models (1997), 687-702. MR 1482289 | Zbl 0899.60011
[21] Omelchenko, V.: Elliptical stable distributions. In: Mathematical Methods in Economics 2010 (M. Houda and J. Friebelova, eds.), pp. 483-488.
[22] Ortobelli, S., Huber, I., Rachev, S., Schwarz, E. S.: Portfolio Choice Theory with Non-Gaussian Distributed Return. In: Handbook of Heavy Tailed Distributions in Finance, Handbooks in Finance: Book 1 (2003), pp. 547-594.
[23] Pivato, M., Seco, L.: Estimating the spectral measure of a multivariate stable distribution via spherical harmonic analysis. J. Multivariate Anal. 87 (2003), 2, 219-240. DOI 10.1016/S0047-259X(03)00052-6 | MR 2016936 | Zbl 1041.60019
[24] Rachev, S. T., Schwarz, E. S., Khindanova, I.: Stable Modeling of Market and Credit Value at Risk. In: Handbook of Heavy Tailed Distributions in Finance, Handbooks in Finance: Book 1 (2003), pp. 255-264.
[25] Samorodnitsky, G., Taqqu, M. S.: Stable Non-Gaussian Random Processes. Chapman and Hall 1994. MR 1280932 | Zbl 0925.60027
[26] Schmidt, P.: An improved version of Quandt-Ramsey MGF estimator for mixtures of normal distributions and switching regressions. Econometrica 50 (1982), 501-524. DOI 10.2307/1912640 | MR 0662290
[27] Slámová, L., Klebanov, L.: Modeling financial returns by discrete stable distributions. In: Proc. 30th International Conference Mathematical Methods in Economics 2012.
[28] Tran, K. C.: Estimating mixtures of normal distribution via empirical characteristic function. Econom. Rev. 17 (1998), 167-83. DOI 10.1080/07474939808800410 | MR 1624519
[29] Zolotarev, V.: On representation of stable laws by integrals selected translation. Math. Statist. Probab. 6 (1986), 84-88.
Partner of
EuDML logo