Previous |  Up |  Next

Article

Keywords:
obstacle problem; a posteriori error estimate; functional majorant; finite element method; variational inequalities; Raviart–Thomas elements
Summary:
We verify functional a posteriori error estimates proposed by S. Repin for a class of obstacle problems in two space dimensions. New benchmarks with known analytical solution are constructed based on one dimensional benchmark introduced by P. Harasim and J. Valdman. Numerical approximation of the solution of the obstacle problem is obtained by the finite element method using bilinear elements on a rectangular mesh. Error of the approximation is measured by a functional majorant. The majorant value contains three unknown fields: a gradient field discretized by Raviart-Thomas elements, Lagrange multipliers field discretized by piecewise constant functions and a scalar parameter $\beta$. The minimization of the majorant value is realized by an alternate minimization algorithm, whose convergence is discussed. Numerical results validate two estimates, the energy estimate bounding the error of approximation in the energy norm by the difference of energies of discrete and exact solutions and the majorant estimate bounding the difference of energies of discrete and exact solutions by the value of the functional majorant.
References:
[1] Ainsworth, M., Oden, J. T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley and Sons, New York 2000. MR 1885308 | Zbl 1008.65076
[2] Babuška, I., Strouboulis, T.: The finite Element Method and its Reliability. Oxford University Press, New York 2001. MR 1857191
[3] Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Birkhäuser, Berlin 2003. MR 1960405 | Zbl 1020.65058
[4] Braess, D., Hoppe, R. H. W., Schöberl, J.: A posteriori estimators for obstacle problems by the hypercircle method. Comput. Vis. Sci. 11 (2008), 351-362. DOI 10.1007/s00791-008-0104-2 | MR 2425501
[5] Brezi, F., Hager, W. W., Raviart, P. A.: Error estimates for the finite element solution of variational inequalities I. Numer. Math. 28 (1977), 431-443. DOI 10.1007/BF01404345 | MR 0448949
[6] Buss, H., Repin, S.: A posteriori error estimates for boundary value problems with obstacles. In: Proc. 3nd European Conference on Numerical Mathematics and Advanced Applications, Jÿvaskylä 1999, World Scientific 2000, pp. 162-170. MR 1936177 | Zbl 0968.65041
[7] Carstensen, C., Merdon, C.: A posteriori error estimator competition for conforming obstacle problems. Numer. Methods Partial Differential Equations 29 (2013), 667-692. DOI 10.1002/num.21728 | MR 3022903
[8] Dostál, Z.: Optimal Quadratic Programming Algorithms. Springer 2009. MR 2492434
[9] Falk, R. S.: Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28 (1974), 963-971. DOI 10.1090/S0025-5718-1974-0391502-8 | MR 0391502 | Zbl 0297.65061
[10] Fuchs, M., Repin, S.: A posteriori error estimates for the approximations of the stresses in the Hencky plasticity problem. Numer. Funct. Anal. Optim. 32 (2011), 610-640. DOI 10.1080/01630563.2011.571802 | MR 2795532
[11] Glowinski, R., Lions, J. L., Trémolieres, R.: Numerical Analysis of Variational Inequalities. North-Holland 1981. MR 0635927 | Zbl 0463.65046
[12] Gustafsson, B.: A simple proof of the regularity theorem for the variational inequality of the obstacle problem. Nonlinear Anal. 10 (1986), 12, 1487-1490. DOI 10.1016/0362-546X(86)90119-7 | MR 0869557 | Zbl 0612.49005
[13] Valdman, P. Harasim AD J.: Verification of functional a posteriori error estimates for obstacle problem in 1D. Kybernetika 49 (2013), 5, 738-754. MR 3182637
[14] Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J.: Solution of variational inequalities in mechanics. Applied Mathematical Sciences 66, Springer-Verlag, New York 1988. MR 0952855 | Zbl 0654.73019
[15] Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York 1980. MR 0567696 | Zbl 0988.49003
[16] Lions, J. L., Stampacchia, G.: Variational inequalities. Comm. Pure Appl. Math. 20 (1967), 493-519. DOI 10.1002/cpa.3160200302 | MR 0216344 | Zbl 0152.34601
[17] Neittaanmäki, P., Repin, S.: Reliable Methods for Computer Simulation (Error Control and A Posteriori Estimates). Elsevier, 2004. MR 2095603 | Zbl 1076.65093
[18] Nochetto, R. H., Seibert, K. G., Veeser, A.: Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95 (2003), 631-658. DOI 10.1007/s00211-002-0411-3 | MR 1993943
[19] Rahman, T., Valdman, J.: Fast MATLAB assembly of FEM matrices in 2D and 3D: nodal elements. Appl. Math. Comput. 219 (2013), 7151-7158. DOI 10.1016/j.amc.2011.08.043 | MR 3030557 | Zbl 1288.65169
[20] Repin, S.: A posteriori error estimation for variational problems with uniformly convex functionals. Math. Comput. 69 (230) (2000), 481-500. DOI 10.1090/S0025-5718-99-01190-4 | MR 1681096 | Zbl 0949.65070
[21] Repin, S.: A posteriori error estimation for nonlinear variational problems by duality theory. Zapiski Nauchn. Semin. POMI 243 (1997), 201-214. MR 1629741 | Zbl 0904.65064
[22] Repin, S.: Estimates of deviations from exact solutions of elliptic variational inequalities. Zapiski Nauchn. Semin, POMI 271 (2000), 188-203. MR 1810617 | Zbl 1118.35320
[23] Repin, S.: A Posteriori Estimates for Partial Differential Equations. Walter de Gruyter, Berlin 2008. MR 2458008 | Zbl 1162.65001
[24] Repin, S., Valdman, J.: Functional a posteriori error estimates for problems with nonlinear boundary conditions. J. Numer. Math. 16 (2008), 1, 51-81. DOI 10.1515/JNUM.2008.003 | MR 2396672 | Zbl 1146.65054
[25] Repin, S., Valdman, J.: Functional a posteriori error estimates for incremental models in elasto-plasticity. Centr. Eur. J. Math. 7 (2009), 3, 506-519. DOI 10.2478/s11533-009-0035-2 | MR 2534470 | Zbl 1269.74202
[26] Ulbrich, M.: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. SIAM, 2011. MR 2839219 | Zbl 1235.49001
[27] Valdman, J.: Minimization of functional majorant in a posteriori error analysis based on $H(div)$ multigrid-preconditioned CG method. Adv. Numer. Anal. (2009). DOI 10.1155/2009/164519 | MR 2739760 | Zbl 1200.65095
[28] Zou, Q., Veeser, A., Kornhuber, R., Gräser, C.: Hierarchical error estimates for the energy functional in obstacle problems. Numer. Math. 117 (2012), 4, 653-677. DOI 10.1007/s00211-011-0364-5 | MR 2776914 | Zbl 1218.65067
Partner of
EuDML logo