| Title: | Equidistribution in the dual group of the $S$-adic integers (English) | 
| Author: | Urban, Roman | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 64 | 
| Issue: | 4 | 
| Year: | 2014 | 
| Pages: | 911-931 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | Let $X$ be the quotient group of the $S$-adele ring of an algebraic number field by the discrete group of $S$-integers. Given a probability measure $\mu $ on $X^d$ and an endomorphism $T$ of $X^d$, we consider the relation between uniform distribution of the sequence $T^n\bold {x}$ for $\mu $-almost all $\bold {x}\in X^d$ and the behavior of $\mu $ relative to the translations by some rational subgroups of $X^d$. The main result of this note is an extension of the corresponding result for the $d$-dimensional torus $\mathbb T^d$ due to B. Host. (English) | 
| Keyword: | uniform distribution modulo $1$ | 
| Keyword: | equidistribution in probability | 
| Keyword: | algebraic number fields | 
| Keyword: | $S$-adele ring | 
| Keyword: | $S$-integer dynamical system | 
| Keyword: | algebraic dynamics | 
| Keyword: | topological dynamics | 
| Keyword: | $a$-adic solenoid | 
| MSC: | 11J71 | 
| MSC: | 11K06 | 
| MSC: | 54H20 | 
| idZBL: | Zbl 06433704 | 
| idMR: | MR3304788 | 
| DOI: | 10.1007/s10587-014-0143-4 | 
| . | 
| Date available: | 2015-02-09T17:25:50Z | 
| Last updated: | 2020-07-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/144151 | 
| . | 
| Reference: | [1] Berend, D.: Multi-invariant sets on compact abelian groups.Trans. Am. Math. Soc. 286 (1984), 505-535. Zbl 0523.22004, MR 0760973, 10.1090/S0002-9947-1984-0760973-X | 
| Reference: | [2] Bertin, M.-J., Decomps-Guilloux, A., Grandet-Hugot, M., Pathiaux-Delefosse, M., Schreiber, J.-P.: Pisot and Salem Numbers.With a preface by David W. Boyd Birkhäuser Basel (1992). Zbl 0772.11041, MR 1187044 | 
| Reference: | [3] Chothi, V., Everest, G., Ward, T.: {$S$}-integer dynamical systems: periodic points.J. Reine Angew. Math. 489 (1997), 99-132. Zbl 0879.58037, MR 1461206 | 
| Reference: | [4] Drmota, M., Tichy, R. F.: Sequences, Discrepancies and Applications.Lecture Notes in Mathematics 1651 Springer, Berlin (1997). Zbl 0877.11043, MR 1470456, 10.1007/BFb0093405 | 
| Reference: | [5] Gouvêa, F. Q.: $p$-adic Numbers: An Introduction.Universitext Springer, Berlin (1997). Zbl 0874.11002, MR 1488696 | 
| Reference: | [6] Halmos, P. R.: On automorphisms of compact groups.Bull. Am. Math. Soc. 49 (1943), 619-624. Zbl 0061.04403, MR 0008647, 10.1090/S0002-9904-1943-07995-5 | 
| Reference: | [7] Hewitt, E., Ross, K. A.: Abstract Harmonic Analysis. Vol. I: Structure of topological groups, integration theory, group representations.Fundamental Principles of Mathematical Sciences 115 Springer, Berlin (1979). MR 0551496 | 
| Reference: | [8] Host, B.: Some results of uniform distribution in the multidimensional torus.Ergodic Theory Dyn. Syst. 20 (2000), 439-452. Zbl 1047.37003, MR 1756978 | 
| Reference: | [9] Host, B.: Normal numbers, entropy, translations.Isr. J. Math. 91 French (1995), 419-428. Zbl 0839.11030, MR 1348326, 10.1007/BF02761660 | 
| Reference: | [10] Koblitz, N.: $p$-adic Numbers, $p$-adic Analysis, and Zeta-Functions.Graduate Texts in Mathematics 58 Springer, New York (1977). Zbl 0364.12015, MR 0754003, 10.1007/978-1-4684-0047-2 | 
| Reference: | [11] Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Pure and Applied Mathematics.John Wiley & Sons New York (1974). MR 0419394 | 
| Reference: | [12] Mahler, K.: $p$-adic Numbers and Their Functions.Cambridge Tracts in Mathematics 76 Cambridge University Press, Cambridge (1981). Zbl 0444.12013, MR 0644483 | 
| Reference: | [13] Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers.Springer Monographs in Mathematics Springer, Berlin (2004). Zbl 1159.11039, MR 2078267 | 
| Reference: | [14] Neukirch, J.: Algebraic Number Theory.Fundamental Principles of Mathematical Sciences 322 Springer, Berlin (1999). Zbl 0956.11021, MR 1697859 | 
| Reference: | [15] Ramakrishnan, D., Valenza, R. J.: Fourier Analysis on Number Fields.Graduate Texts in Mathematics 186 Springer, New York (1999). Zbl 0916.11058, MR 1680912, 10.1007/978-1-4757-3085-2 | 
| Reference: | [16] Robert, A. M.: A Course in $p$-adic Analysis.Graduate Texts in Mathematics 198 Springer, New York (2000). Zbl 0947.11035, MR 1760253, 10.1007/978-1-4757-3254-2 | 
| Reference: | [17] Schmidt, K.: Dynamical Systems of Algebraic Origin.Progress in Mathematics 128 Birkhäuser, Basel (1995). Zbl 0833.28001, MR 1345152 | 
| Reference: | [18] Urban, R.: Equidistribution in the {$d$}-dimensional {$a$}-adic solenoids.Unif. Distrib. Theory 6 (2011), 21-31. MR 2817758 | 
| Reference: | [19] Weil, A.: Basic Number Theory.Die Grundlehren der Mathematischen Wissenschaften 144 Springer, New York (1974). Zbl 0326.12001, MR 0427267 | 
| . |