[1] Blackadar, B.: 
$K$-Theory for Operator Algebras. (2nd ed.). Mathematical Sciences Research Institute 5 Cambridge University Press, Cambridge (1998). 
MR 1656031 | 
Zbl 0913.46054[4] Elliott, G. A., Gong, G.: 
On the classification of $C^*$-algebras of real rank zero. II. Ann. Math. (2) 144 (1996), 497-610. 
MR 1426886[7] Gong, G.: 
On the classification of simple inductive limit $C^*$-algebras. I: The reduction theorem. Doc. Math., J. DMV (electronic) 7 (2002), 255-461. 
MR 2014489 | 
Zbl 1024.46018[8] Kucerovsky, D., Ng, P. W.: 
The corona factorization property and approximate unitary equivalence. Houston J. Math. (electronic) 32 (2006), 531-550. 
MR 2219330 | 
Zbl 1111.46050[11] Lin, H.: 
Approximate homotopy of homomorphisms from $C(X)$ into a simple $C^*$-algebra. Mem. Am. Math. Soc. 205 (2010), 131 pages. 
MR 2643313[14] Lin, H.: 
Classification of simple $C^*$-algebras and higher dimensional noncommutative tori. Ann. Math. (2) 157 (2003), 521-544. 
MR 1973053[15] Maclane, S.: 
Homology. Die Grundlehren der mathematischen Wissenschaften. Bd. 114 Springer, Berlin (1963), German. 
MR 0156879 | 
Zbl 0133.26502[16] Phillips, N. C.: 
A classification theorem for nuclear purely infinite simple $C^*$-algebras. Doc. Math., J. DMV (electronic) 5 (2000), 49-114. 
MR 1745197 | 
Zbl 0943.46037[17] Rørdam, M.: 
Classification of extensions of certain $C^*$-algebras by their six term exact sequences in $K$-theory. Math. Ann. 308 (1997), 93-117. 
DOI 10.1007/s002080050067 | 
MR 1446202[18] Rørdam, M., Larsen, F., Laustsen, N.: 
An Introduction to $K$-Theory for $C^*$-Algebras. London Mathematical Society Student Texts 49 Cambridge University Press, Cambridge (2000). 
MR 1783408 | 
Zbl 0967.19001[19] Rørdam, M., Størmer, E.: 
Classification of Nuclear $C^*$-Algebras. Entropy in Operator Algebras. Encyclopaedia of Mathematical Sciences 126. Operator Algebras and Non-Commutative Geometry 7 Springer, Berlin (2002). 
MR 1878881 | 
Zbl 0985.00012[23] Wei, C.: Classification of unital extensions and the BDF-theory. Submitted to Houst. J. Math.
[24] Wei, C., Wang, L.: 
Isomorphism of extensions of $C(\mathbb T^2)$. Sci. China, Math. 54 (2011), 281-286. 
MR 2771204 | 
Zbl 1225.46051